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A B S T R A C T   

The genesis of manganese (Mn)-carbonate deposits in the Cryogenian Datangpo Formation (~662.9–654.5 Ma), 
Nanhua Basin, South China remains controversial. Here, we combine new proxy data (B/Ga) for watermass 
salinity with existing data (major- and trace-element concentrations, bulk-rock Sr and Nd isotopes, pyrite sulfur 
isotopes, and organic and inorganic carbon isotopes) for redox and other environmental parameters to gain new 
insights into the conditions under which these deposits formed. Our analysis focuses on the Mn-carbonates of the 
1st Member of the Datangpo Formation, which were deposited at the termination of the Sturtian Ice Age, with an 
emphasis on understanding their environment of formation, Mn sources, and microbial processes. Close re
lationships between Mn content and salinity (B/Ga), redox (Corg/P, CuEF), and carbon-cycle (δ13Ccarb, δ13Corg) 
proxies reveal a dominant role of salinity in the development of these Mn-rich deposits. These relationships 
document Mn accumulation in a watermass that fluctuated between brackish, euxinic conditions (Mn-shale beds) 
and saline, ferruginous conditions (Mn-carbonate beds). Significant correlations between Mn content and hy
drothermal proxies (Eu/Eu*, 87Sr/86Sr and εNd(i)), as well as covariation of (87Sr/86Sr)i vs εNd(i) and Fe/Ti vs 
Al/(Al + Fe + Mn), suggest that Mn was sourced mainly from hydrothermal vents in the deep Nanhua Basin. 
Episodic hydrothermal activity also provided nutrients that boosted primary productivity and organic matter 
accumulation rates in the form of mineralized biomats. Partial oxidation of the organic carbon coupled to 
dissimilatory Mn(IV) reduction promoted Mn(II)-carbonate formation in conjunction with high levels of glacially 
generated alkalinity. A similar confluence of factors (i.e., high background alkalinity, hydrothermal inputs of Mn 
and nutrients, and microbial activity) may have played a role in the formation of large-scale Mn-ore deposits 
during other geologic epochs.   

1. Introduction 

The Cryogenian Period (~720–635 Ma) was characterized by 
deposition of massive manganese (Mn) deposits and the reappearance of 
banded iron formations (BIF) in South China and around the world 
(Maynard, 2010; Xu et al., 2019; Freitas et al., 2021). In the Nanhua 
Basin of South China, economic quantities of Mn-carbonates accumu
lated in the 1st Member of the Datangpo Formation during the inter
glacial interval between the Sturtian (~720–660 Ma) and Marinoan 
(~654–635 Ma) ice ages (Shields-Zhou et al., 2012; Rooney et al., 2015) 

[note: our designation of these glacial events as “ice ages” follows Yu 
et al. (2020)]. Other Mn-carbonates that were deposited around this 
time include those of the Penganga Group at Adilabad, India (Gutzmer 
and Beukes, 1998; Maynard and Kuleshov, 2017), and the massive, post- 
Marinoan Mn and Fe deposits of the Santa Cruz Formation of the Uru
cum District of Brazil (Urban et al., 1992; Freitas et al., 2021). These 
deposits have been inferred to share certain features, including hydro
thermal inputs, fluctuating environmental redox conditions, and 
microbially mediated carbonate precipitation. However, specific aspects 
of their formation remain poorly resolved, especially regarding 
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watermass salinity and its relationship to redox and productivity con
ditions, as well as the sources of manganese and alkalinity for Mn(II)- 
carbonate formation (herein simply referred to as Mn-carbonates). 

Several environmental features of the post-Sturtian Nanhua Basin 
and their relationship to Mn-ore formation have been the subject of 
considerable study. For instance, Mn-carbonate precipitation has pre
viously been linked to episodic oxygenation events (Yu et al., 2016; Xiao 
et al., 2017, 2019), although more recent Fe-speciation studies have 
inferred uniformly anoxic conditions, with black shale and Mn- 
carbonate intervals representing euxinic and ferruginous conditions, 
respectively (Ye et al., 2018; Ma et al., 2019; Cheng et al., 2020; Tan 
et al., 2021). It has also been suggested that primary productivity was 
generally high owing to rising sea levels and that there was a greater 
nutrient supply from the open ocean (Li et al., 2012; Ai et al., 2021). In 
turn, this would have led to the intense decomposition of organic matter, 
which may have contributed alkalinity (HCO3

– and CO3
2–) essential for 

Mn-carbonate precipitation (Polgári et al., 2012; Häusler et al., 2018). 
While geochemical signatures suggest that hydrothermal activity was 
the main source of Mn2+ within the Nanhua Basin (Yu et al., 2016), 
intense weathering of fine glacial debris (Wang et al., 2019) may 
represent another potential source of both Mn2+ and alkalinity (Ma 
et al., 2019; Yu et al., 2020, 2022). What has been lacking in virtually all 
these studies, however, is consideration of potential fluctuations in 
watermass salinity and how they were related to variations in redox and 
productivity, and ultimately to the sources of manganese and alkalinity 
necessary for the formation of Mn-carbonates. 

It has been assumed, either implicitly or explicitly, by most previous 
studies that the Datangpo Formation was deposited under fully marine 
conditions (e.g., Wang and Li, 2003; Zhang et al., 2015). The first study 
to examine watermass salinity variation inferred highly dynamic con
ditions, with fluctuations ranging from low-brackish to fully marine 
salinities (Cheng et al., 2021). The only other paleosalinity study to date 
(Yu et al., 2022) demonstrated that the Nanhua Basin water column was 
salinity-stratified, with a reduced-salinity surface layer overlying a fully 
marine deep layer. These findings suggest that secular variation in 
freshwater runoff and/or watermass exchange with the open ocean had 
the potential to exert a strong influence on both salinity and other 
environmental properties that controlled Mn-ore formation in the post- 
Sturtian Nanhua Basin. Paleosalinity analysis has the potential to clarify 
relationships between salinity, redox, productivity, and chemical fluxes 
and, thus, to yield significant new insights into the genesis of Datangpo 
Formation Mn-ore deposits (Gilleaudeau et al., 2021; Song et al., 2021). 

Here, we make use of three elemental ratios (i.e., B/Ga, Sr/Ba, and S/ 
TOC) that were recently proposed as useful proxies for watermass 
salinity in ancient shale and mudstone units, based on calibration of 
salinity facies thresholds in modern sediments deposited in waters of 
known salinity (Wei and Algeo, 2020). These salinity proxies have 
already yielded valuable insights regarding paleoenvironmental condi
tions in shale depositional systems covering a range of ages (e.g., 
Remírez and Algeo, 2020; Gilleaudeau et al., 2021; Song et al., 2021; 
Wei et al., 2022). In the present study, we evaluate salinity proxy data 
for the 1st Member of the Datangpo Formation along with petrographic 
and geochemical data (i.e., major and trace elements, 87Sr/86Sr, 
143Nd/144Nd, δ13Corg, δ13Ccarb, δ34SCAS, and δ34Spy). Although we draw 
some petrographic and geochemical data from Yu et al., (2019, 2022), 
those two studies were focused respectively on the microbial metal
logenetic mechanism and the alkalinity source of the Datangpo Mn- 
carbonate deposits. The present study was undertaken with 
completely different aims, specifically: (1) evaluating the relationships 
between salinity and other environmental parameters (e.g., redox con
ditions, hydrothermal inputs, and microbial activity) in the Cryogenian 
Nanhua Basin; (2) better constraining the Mn source for Datangpo 
Formation Mn-carbonates; and (3) developing a revised, salinity-based 
model of Mn-carbonate formation in the post-Sturtian Nanhua Basin. 
Our findings are likely to have application to other penecontempora
neous Mn deposits globally. 

2. Geological setting 

The supercontinent Rodinia was assembled between 1300 and 900 
Ma (Fig. 1A; Li et al., 2008) and subsequently broke up at ~ 750 Ma 
(Hoffman and Schrag, 2002, Goddéris et al., 2003, 2007). Its breakup 
yielded multiple cratons, including the South China, North China, and 
Tarim cratons located in present-day China. These resultant cratons 
were mostly located in the paleo-tropics and subjected to high rates of 
erosion and weathering (Hoffman and Schrag, 2002, Goddéris et al., 
2003, 2007; Merdith et al., 2021). Strong drawdown of atmospheric CO2 
levels associated with weathering of mafic–ultramafic rocks and 
increased organic matter (OM) burial linked to expansion of the early 
metazoan biosphere (Love et al., 2009; Feulner et al., 2015; Slater and 
Bohlin, 2022) triggered global glaciations (or ‘Snowball Earth’ events) 
that define the Cryogenian Period, i.e., the Sturtian (~720–660 Ma) and 
Marinoan (~654–635 Ma) ice ages (Ridgwell et al., 2003; Shields-Zhou 
et al., 2012; Rooney et al., 2015; Cox et al., 2016; Hoffman et al., 2017; 
Pu et al., 2022). These glacial episodes caused major changes in the 
chemistry of Earth’s oceans, leading to widespread formation of man
ganese (Mn) ore deposits and banded iron formations (BIF) (e.g., Urban 
et al., 1992; Gutzmer and Beukes, 1998; Maynard, 2010; Xu et al., 2019; 
Freitas et al., 2021), and ultimately guiding the evolution of Earth’s 
biosphere (Planavsky et al., 2010; Macdonald et al., 2010; Yonkee et al., 
2014; Brocks et al., 2017; Hoffman et al., 2017; Nettersheim et al., 
2019). 

During the mid-Cryogenian Period, the South China Craton was 
located at ~40-60◦N (Fig. 1A; Li et al., 2013). The central part of this 
craton was occupied by the Nanhua Basin, a semi-restricted epicratonic 
sea (Zhang et al., 2008; Peng et al., 2019; Cheng et al., 2021), which had 
limited connections to the open ocean over sills on its northeastern and 
(possibly) southwestern margins (Yu et al., 2016; Wang et al., 2019; 
Cheng et al., 2021; note: all coordinates are in the modern geographic 
reference frame unless otherwise noted). This intracontinental rift basin 
was the product of a failed rifting event during the mid-Neoproterozoic 
that split the South China Craton into two the Yangtze and Cathaysia 
blocks (Fig. 1A, B; Li et al., 2009; Song-F et al., 2020a) that later expe
rienced compressional deformation during the Ordovician-Silurian 
Kwangsian Orogeny (Wang et al., 2011; Liu et al., 2016). The Neo
proterozoic rifting event was associated with strong hydrothermal cir
culation along fault-bounded blocks within the Nanhua Basin (Pirajno, 
2012; Zhou et al., 2013; Yu et al., 2016; Zhou et al., 2018; Wang et al., 
2019). At the start of post-Sturtian Ice Age interglaciation (~660 Ma), 
the Nanhua Basin contained a reduced-salinity, high-alkalinity water
mass (Yu et al., 2022) that was stratified with anoxic, saline deep waters 
and oxic, less saline surface waters (Lansard et al., 2012; Li et al., 2010, 
2012, 2020; Zhang et al., 2015; Yu et al., 2016, 2022; Wang et al., 2019; 
Cheng et al., 2021). 

The Cryogenian succession of the Nanhua Basin consists of (in 
ascending order) the Tiesi’ao, Datangpo, and Nantuo formations 
(Fig. 1C). The Tiesi’ao Formation comprises diamictite and sandstone 
deposited during the Sturtian Ice Age (~720–660 Ma), while the Nantuo 
Formation contains glaciomarine diamictite, siltstone, and sandstone 
deposited during the Marinoan Ice Age (~650–632.3 ± 5.9 Ma) (Rooney 
et al., 2015). The Datangpo Formation, which is conformable with both 
the underlying and overlying glacial units, represents sediments that 
accumulated during the interglacial period. The Datangpo Formation is 
further subdivided into three members, with the 1st Member being the 
oldest (Yu et al., 2016). It consists of massive Mn-carbonates (mineral
ogically dominated by rhodochrosite; MnCO3) interbedded with Mn- 
bearing shales that contain high organic carbon (1.6–2.4 wt%) and 
abundant pyrite (FeS2). This member represents an economically 
important Mn-ore deposit that is present throughout the grabens of the 
Nanhua Basin, with thicknesses of up to ~ 15 m. The 2nd Member of the 
Datangpo Formation is dominated by pyritic black shales, while the 3rd 
Member consists mainly of siltstone and is generally thicker than the 
other members (Fig. 1C). 
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Two sites were investigated in this study: a (1) drillcore section 
(ZK4207, 28◦2′24′′N, 109◦5′2′′E, elev. 480 m.a.s.l.) and (2) mine tunnel 
section (LB-B, 28◦4′20′′N 108◦46′36′′E; elev. 109.48 m below sea level), 
both being located in the Songtao Graben, Wuling Subbasin, repre
senting an intrashelf trough on the northwestern margin of the Nanhua 
Basin (Fig. 1B) (Peng et al., 2019; Yu et al., 2019). The study sites are 
located just southwest of Taiping Village, Songtao County, in north
eastern Guizhou Province, with ~ 10 km separating the two sections 
(Fig. 1C). At both sites, the Datangpo Formation is present at depths of 
800–1000 m below ground level. At ZK4207, the Datangpo Formation is 
370 m thick and includes 13 m of Mn-rich strata (1st Member), 27 m of 
black shale (2nd Member), and 330 m of siltstone (3rd Member). At LB- 
B, the Datangpo Formation is 392 m thick and includes 5 m of Mn-rich 
strata (1st Member), 53 m of black shale (2nd Member), and 334 m of 
siltstone (3rd Member). In the study area, the 1st Member, which is the 
focus of the present study, consists of four horizontally laminated Mn- 
shale layers with three interbedded Mn-carbonate layers. In the 
ZK4207 core, we subdivided the 1st Member into a Lower Unit 
(895.5–901.5 m), a Middle Unit (891.5–895.5 m; equivalent to the “high 
boron interval”, or HBI, of Yu et al., 2022), and an Upper Unit 
(887.8–891.5 m) based on characteristic chemostratigraphic patterns 
(see Section 4). Both the paleogeographic setting (Yu et al., 2016) and 

sulfur isotope evidence (Wang et al., 2019) indicate that the study sec
tion accumulated below the photic zone (cf. Tyler, 2003), in the deep 
layer of the Nanhua Basin water column, at water depths estimated to 
have been ~ 200–500 m. 

3. Methods 

Covered thin sections of laminated Mn-ore samples were prepared 
for two samples, one from core ZK4207 (i.e., ZK4207-83; at 888.7 m) 
and one from core LB-B (i.e., LB-304; at 387.3 m). The thin-section of 
sample LB-304 was also analyzed by Raman spectroscopy at Szeged 
University, Hungary. For this study, new geochemical analyses were 
undertaken on samples from drillcore ZK4207, from which 29 samples 
were collected from the base to the top of the Mn-rich 1st Member at 
quasi-regular intervals of ~ 10 cm. All 29 samples were analyzed for 
major and trace elements, total carbon (TC) and total organic carbon 
(TOC), and sulfur (S), strontium (Sr) and neodymium (Nd) isotopes, a 
subset of 24 samples was analyzed for boron (B) content, and a subset of 
14 samples for organic and inorganic carbon isotopes. Details of the 
analytical protocols for Raman spectroscopy, major and trace elements, 
B content, TIC and TOC, Sr and Nd isotopes, organic and inorganic 
carbon isotopes, and sulfide S isotopes are given in the Supplemental 

Fig. 1. (A) Global paleogeography at ~ 660 Ma (modified from Li et al., 2013); (B) Late Neoproterozoic Nanhua Rift Basin of South China, showing locations of the 
two study sections; (C) Stratigraphic column of drillcore ZK4207 (ages from Zhou et al., 2004, and Zhang et al., 2008); (D) Simplified cross-section of Nanhua Basin 
showing deep faults and zones of hydrothermal activity. 
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Materials. 

4. Results 

4.1. Petrography and Raman analysis 

Petrographic study of Mn-ore samples from the LB-B and ZK4207 
cores revealed the frequent presence of laminae and mineralized organic 
material, which are readily observable at both low magnification in 
hand samples and at high magnification (×1000) in thin sections. Based 
on these observations, three types of laminated structures can be iden
tified at different scales (from finest to coarsest): (1) mineralized organic 
laminae (~1 to 10 μm), (2) fine-grained quartz laminae (0.05–0.5 mm), 
and (3) laminae of various Mn-containing mineral phases (0.5 to 3 mm). 
These features likely represent some type of anaerobic microbial mat, 
possibly with admixed planktonic and in situ heterotrophic eukaryotic 
biomass. 

The organic laminae are thin brown to black layers (often alter
nating) that exhibit variable density and individual thicknesses ranging 
from ~ 1 to 10 μm. The relative proportions of brown and black laminae 
vary stratigraphically, exhibiting a quasi-regular, millimeter-scale 
rhythmicity (Fig. 2A-C). Under high magnification (×1000), the mesh
work in the matrix is composed of irregularly distributed, micrometer- 

sized, rod- to vibrio-shaped microorganisms (arrow in Fig. 2D-E). 
Microtextural features like crinkly brown laminae and interwoven 
lacework of the organic laminae are the main constituents of the matrix. 

Fine-grained (5–30 μm long) authigenic quartz crystals are present in 
discontinuous laminae (0.05–0.5 mm thick) within the Mn-carbonate 
matrix, as seen in high-magnification images (Fig. 2F-G). These 
quartz-rich laminae usually contain some rhodochrosite, and the quartz 
crystals are oriented parallel to bedding (Fig. 2F). Quartz precipitates 
are widespread, distributed along the original lamination of the sample 
but partially cross-cutting it in places, and associated closely with fine- 
grained carbonates, showing a cross-cutting structure suggestive of a 
diagenetic origin (Fig. 2G). Despite pervasive lamination, detrital in
terbeds are rare. 

The Mn-rich intervals exhibit the coarsest scale of lamination, in 
which the Mn-mineral fractions vary at a scale of 0.5 to 3.0 mm. A 2.2- 
cm-thick interval of sample LB-304 was analyzed petrographically under 
high magnification to better assess the relationships amongst the 
different laminar features. This analysis revealed a regularly laminated 
structure consisting of five layers (dark brown-black-gray-black-dark 
brown) based on their color and petrographic character (Fig. 3A). 
Raman analysis demonstrated differences in mineral composition be
tween the black, dark brown, and gray layers, which are enriched in 
kutnohorite [CaMn(CO3)2], calcian rhodochrosite (Ca-rhodochrosite), 

Fig. 2. Thin-section photomicrographs of Mn-carbonate samples, ZK4207-83, 888.7 m; and LB-304, 387.3 m, showing mineralized biomats and microlaminated 
structures (red rectangle and yellow arrow) in ZK4207 (A) and LB-B (B, C); mineralized microbially produced micro-textures (yellow arrow) in ZK4207-83 (D) and 
LB-304 (E); quartz precipitates (yellow arrows) and mineralized organic laminae in LB-304 (F-G). 
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and quartz, respectively (Fig. 3B-D). The gray and dark brown layers are 
characterized by extremely low kutnohorite, and the black layers by low 
quartz. All laminae contain relatively low ankerite, with the gray layer 
in the middle having the smallest amount. The black layers exhibit the 
highest concentrations of Mn, and the gray layer the lowest (Fig. 3B-D). 

4.2. Paleosalinity proxies 

Amongst the bulk-shale elemental salinity proxies proposed by Wei 
and Algeo (2020), Sr/Ba cannot be applied to the present study units 

because of a significant positive correlation of Sr with CaO (Fig. S1; r =
+0.86, p(α) < 0.001), suggesting that a large fraction of Sr was sourced 
from the carbonate fraction. The S/TOC is not able to robustly distin
guish brackish and marine salinity facies. This makes B/Ga the most 
promising proxy for the present study units. 

The B/Ga proxy can provide information about paleosalinity condi
tions in fine-grained siliciclastic facies, with values of < 3, 3–6, and > 6 
indicative of freshwater, brackish, and marine facies, respectively (Wei 
et al., 2018; Wei and Algeo, 2020). In the present study units, B/Ga 
ranges from 6.6 to 11.8 with a median of 8.6 (Fig. 4) (note: to avoid the 

Fig. 3. (A) Thin-section of Mn-ore sample from LB-304, showing a laminated structure alternating from gray to black color; red line indicates the Raman mea
surement. (B-D) the number of peaks per 1 mm section for the minerals kutnohorite, Ca-rhodochrosite, quartz and ankerite. 

Fig. 4. Chemostratigraphic profiles of redox-, salinity-, productivity-, and climate-related proxies for the study interval in drillcore ZK4207. Note: HBI is the “high 
boron interval”; The white and black dots in the Corg/P column represent uncorrected and corrected values, respectively (see Eqs. 1 and 2). 
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influence of outliers, all ranges in the present study are given as 16th- 
84th percentiles). Median B/Ga values are higher in the Middle Unit 
(12.0, range 10.8–12.3) than in the Lower (median 7.9, range 6.6–9.8) 
and Upper units (7.7, range 6.8–7.9). These values are consistent with 
fully marine salinities, although possibly reflecting some degree of 
salinity variation around the median marine value, e.g., ~35 ± 5 psu 
(practical salinity unit), with somewhat higher salinities in the Middle 
Unit relative to the Lower and Upper units. 

4.3. Hydrothermal proxies 

Europium anomalies (i.e., Eu/Eu*SN; Humphris and Bach, 2005) and 
Sr and Nd isotopes (Delacour et al., 2008) have been used as indicators 
of hydrothermal influence. Positive Eu anomalies with Eu/Eu*SN > 1.05 
are often linked to reducing high-temperature hydrothermal fluids 
(>200 ◦C), in which Eu2+ predominates over Eu3+ (Bau and Dulski, 
1996). In the present study, Eu/Eu*SN ranges from 0.83 to 1.07, with a 
median value of 0.93 (Fig. 5). Initial 87Sr/86Sr has a median (range) of 
0.713003 (0.710047 to 0.75116), and initial εNd(t) has a median 
(range) of − 3.02 (− 4.1 to − 2.4) [note: initial values calculated for 660 
Ma]. 

Manganese contents are negatively correlated with Al2O3 (r = −

0.91; p(α) < 0.001), reflecting a dominantly two-component mixture (i. 
e., Mn-carbonate and clays) of the samples (Fig. 5). Manganese shows a 
secular variation pattern similar to that of Eu/Eu*SN and 87Sr/86Sr(660 

Ma), but the mirror opposite of that of εNd(660 Ma) (Fig. 5). Consistent 
with the relationships observed for Mn, Al2O3 variation is the inverse of 
that of Eu/Eu*SN and 87Sr/86Sr(660 Ma), but correlates positively with 
εNd(660 Ma) (r = +0.73; p(α) < 0.001). 87Sr/86Sr(660 Ma) is negatively 
correlated with εNd(660 Ma) (r = − 0.58; p(α) < 0.001) (Fig. 5). 

4.4. Redox proxies 

We evaluated redox conditions in the Datangpo Formation based on 
a combination of published Fe-speciation data (see Section 5.2) and 
elemental proxies (UEF, CuEF, and Corg/P) generated in the present study 
(note: Mo data were unavailable). Redox-sensitive trace elements 
(RSTE) are generally less soluble under reducing than under oxidizing 
conditions, resulting in marked sedimentary enrichments in anoxic 
facies (Tribovillard et al., 2006). This generalized behavior makes RSTE 
enrichment factors (e.g., CuEF, UEF, and VEF) useful as paleoredox 
proxies (Algeo and Maynard, 2008), with a robustness that substantially 
exceeds that of bimetal ratio proxies (e.g., Ni/Co, V/Ni; Algeo and Liu, 
2020). Amongst the redox-sensitive trace elements (RSTEs), we focused 
on UEF and CuEF, which yielded median values (ranges) of 1.02 
(0.89–1.15) and 1.06 (0.91–1.69), respectively (Figs. 4, 6B). These 
values suggest no significant authigenic enrichment, consistent with 
oxic or anoxic-ferruginous conditions prevailing in the depositional 
system. 

Corg/P is another widely used paleoredox proxy that is based on 
redox-dependent differences in retention patterns of organic C and P in 
the sediment during remineralization of organic matter (Algeo and 
Ingall, 2007; Kraal et al., 2010; Song-J et al., 2020b). In the present 
study units, raw (uncorrected) Corg/P ratios range from 22 to 45 with a 
median of 32 (Figs. 4, 6A). Since reduction of Mn(IV) to Mn(II) followed 
by precipitation of Mn-carbonate is generally associated with the 
decomposition of organic matter in the study interval (Yu et al., 2016), 
we calculated corrected Corg/P ratios (i.e., [Corg/P]corr) to account for 
organic carbon loss:  

2MnO2 + CH2O + HCO3
– ←→2MnCO3 + H2O + OH–(1)                           

[Corg/P]corr = (Corg + Mn/2) / P(2)                                                           

Fig. 5. Chemostratigraphic profiles of Mn, Al, hydrothermal-, and sulfur-related proxies for the study interval in drillcore ZK4207.  
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where all species are in moles, and one-half mole of organic carbon is 
oxidized for each mole of MnCO3 that is formed. In the study units, 
[Corg/P]corr ranges from 38 to 73 with a median value of 52. All three 
proxies (i.e., [Corg/P]corr, CuEF, and UEF) exhibit distinctly higher values 
in the Middle Unit [i.e., medians (ranges) of 67 (50–85), 1.5 (1.1–1.7), 
and 1.1 (0.92–1.1), respectively] than in the Lower [i.e., 42 (24–66), 1.1 
(1.0–1.9), and 1.0 (0.9–1.1)] and Upper units [i.e., 55 (49–61), 0.93 
(0.91–0.98), and 0.89 (0.79–1.0)] (Fig. 4). 

The profiles of the three independent redox proxies utilized in this 
study (i.e., [Corg/P]corr, CuEF, and UEF) display similar stratigraphic 
patterns (Fig. 4). Manganese content shows significant positive corre
lations with [Corg/P]corr (r = +0.48; p(α) < 0.01) and CuEF (r = +0.48; p 
(α) < 0.01) but only a weak and statistically non-significant positive 
correlation with UEF (r = +0.29; p(α) = 0.13). 

4.5. TOC, TIC and carbon isotopes 

TOC ranges from 1.6 to 2.4 wt% with a median of 2.0 wt%, while TIC 
ranges from 2.3 to 5.1 wt% with a median of 4.2 wt%. The δ13Corg and 
δ13Ccarb have medians (ranges) of − 32.22 ‰ (− 32.82 to − 31.82 ‰) 
and − 6.43 ‰ (− 6.72 to − 6.00 ‰) respectively, yielding a relatively 
constant Δ13C of 25.90 ‰ (25.75 to 26.12 ‰). δ13Corg and δ13Ccarb 
exhibit distinctly lower values in the Middle Unit [i.e., medians (ranges) 
of –32.8 ‰ (–33.0 to –32.2 ‰) and –6.71 ‰ (–6.74 to –6.67 ‰), 
respectively] than in the Lower [i.e., –32.3 ‰ (–32.6 to –32.2 ‰) and 
–6.4 ‰ (–6.7 to –6.0 ‰)] and Upper units [i.e., –31.84 ‰ (–32.10 to 
–31.78 ‰) and –6.0 ‰ (–6.4 to –5.9 ‰)] (Fig. 4). 

TIC shows nearly the same pattern as manganese content (Fig. 4), 
with strong positive covariation (r = +0.97; p(α) < 0.01). Manganese 
contents are positively correlated with TOC (r = +0.50; p(α) < 0.01), 
and show a moderate, negative correlation with δ13Ccarb (r = − 0.61; p 
(α) < 0.05) and δ13Corg (r = − 0.50; p(α) = 0.07) (). δ18O ranges from −
10.17 to − 9.07 ‰, with a median of − 9.59 ‰, and exhibits a non- 
significant correlation with Mn content (r = +0.28; p(α) = 0.33). TOC 
exhibits a non-significant correlation with δ13Corg (r = − 0.20; p(α) =

0.49). 

5. Discussion 

The metallogenesis of Mn-carbonates of the Cryogenian Datangpo 
Formation has been extensively investigated, including the roles of 
redox fluctuations (Yu et al., 2016), hydrothermal activity (Zhou et al., 
2013), microbial processes (Yu et al., 2019), hydrography (Dellwig 
et al., 2012; Varentsov, 2013; Cheng et al., 2021), and alkalinity sources 
(Yu et al., 2022). However, the focus of some of these studies was on a 
single aspect of the Datangpo manganese deposits, which has hindered a 
comprehensive understanding of the mechanisms of Mn-carbonate for
mation in the Datangpo Formations and other carbonate-hosted Mn 
deposits. Here, we evaluate how salinity, redox, and productivity vari
ations in the postglacial Nanhua Basin (Sections 5.1-5.3) might have 
collectively contributed to Mn enrichment, and we glean new insights 
into the sources of Mn and the possible role of microbial activities 
(Sections 5.4-5.6). Finally, we integrate our observations and in
terpretations to generate a revised model of Mn-carbonate formation in 
the postglacial Nanhua Basin (Section 5.7). 

5.1. Salinity conditions 

The Cryogenian Nanhua Basin has long been regarded as a fully 
marine basin (e.g., Wang and Li, 2003; Zhang et al., 2015), although a 
degree of watermass restriction in deep graben areas has been inferred 
from geochemical and petrographic data (Li et al., 2012; Yu et al., 2016). 
Post-Sturtian shallow-water cap carbonates record δ13C trends similar to 
those in coeval sections globally (Halverson et al., 2002; Macdonald 
et al., 2010; Johnston et al., 2012), arguing for a robust connection to 
the global ocean (Wang et al., 2019). The weight of existing evidence 
thus favors no more than semi-restriction of the Nanhua Basin 
watermass. 

The water column of the post-Sturtian Nanhua Basin was salinity- 
and redox-stratified, with an oxic, reduced-salinity surface layer and a 
reducing, normal-marine-salinity deep layer (Lansard et al., 2012; Li 
et al., 2012; Cheng et al., 2021; Yu et al., 2022). Such stratification 
patterns normally depend on the overall hydrological balance of a basin 
(i.e., precipitation and runoff versus evaporation), and the rate at which 
watermass is exchanged with the open ocean (Anadón et al., 2002; Algeo 
et al., 2008; Savenije, 2012; Wei et al., 2020). Owing to the influx of 
alkaline glacial meltwater, the surface layer may have had higher 
alkalinity than the deep layer (Yu et al., 2022). 

Among elemental salinity proxies for fine-grained siliciclastic sedi
ments, the B/Ga proxy yields the most consistent and robust in
terpretations (Wei and Algeo, 2020). Although low siliciclastic content 
may yield excessively high B/Ga ratios (Cheng et al., 2023), the 1st 
Member of the Datangpo Formation exhibits a relatively uniform lith
ologic composition, consisting mainly of Mn-carbonate with minor in
tercalations of thin Mn-shale layers. A moderate positive B-Al 
correlation (r = +0.43; p(α) < 0.1) indicates that boron is associated 
with the clay fraction. Gallium is also associated with the clay fraction, 
as shown by a strong Ga-Al correlation (r = +0.93; p(α) < 0.001). Thus, 
B was normalized to Ga, and the B/Ga ratio can be utilized as a proxy for 
watermass salinity (Wei and Algeo, 2020). Ga content is nearly constant 
through the whole study section (median 13.2 ppm, range 9.2–18 ppm), 
whereas B varies significantly, averaging ~ 100 ppm but rising to ~ 170 
ppm within the HBI. Thus, the lithology of the study section does not 
significantly influence the paleosalinity signals documented by the B/Ga 
proxy. 

The B/Ga values of the ZK4207 core (Fig. 4) indicate generally ma
rine salinities, although with some degree of variation around the 
typical mean value, e.g., ~35 ± 5 psu. The B/Ga profile of the study core 
exhibits a considerable degree of stratigraphic coherence, with some
what higher salinities in the Middle Unit (i.e., the HBI) relative to the 
Lower and Upper units. The B/Ga values of the Lower and Upper units 

Fig. 6. B/Ga versus (A) Corg/P and (I) CuEF for drillcore ZK4207.  
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are typical of normal-marine environments (Wei and Algeo, 2020; Wei 
et al., 2022) although a reduction in salinity related to glacial meltwater 
influx might have occurred transiently during the Sturtian deglaciation 
(cf. Dierssen et al., 2002; Anadón et al., 2002), as possibly indicated by 
B/Ga values as low as 5.63 in the Lower Unit and the generally upward 
decreasing B/Ga trend within the Upper Unit. 

The comparatively elevated B/Ga values of the Middle Unit (i.e., the 
“high boron interval”, or HBI, of Yu et al., 2022) suggest either salinities 
somewhat above normal marine (i.e., hypersaline) or an additional B 
source to the Nanhua Basin (Fig. 4). One possibility is development of a 
hypersaline watermass, as evaporation concentrates aqueous B with 
little change in Ga (which primarily resides in the detrital fraction) (Wei 
and Algeo, 2020). However, strong evaporation in the mid-Cryogenian 
Nanhua Basin is unlikely given its probable location at temperate 
paleolatitudes (Fig. 1A) and the absence of sedimentological or miner
alogical evidence for hypersaline conditions. Alternatively, excess B may 
have been supplied by hydrothermal sources, as indicated by significant 
correlations of B/Ga with the hydrothermal proxies Eu/Eu* (r = +0.61; 
p(α) < 0.01), 87Sr/86Sr(660 Ma) (r = +0.63; p(α) < 0.01), and εNd(660 Ma) 
(r = –0.56; p(α) < 0.01). We infer that the most likely cause of elevated 
B/Ga ratios in the Middle Unit was inputs of hydrothermally sourced B 
(Yu et al., 2022), and such inputs may have been accompanied by a rise 
in the salinity of the Nanhua Basin watermass (cf. Noll et al., 1996; 
Pirajno, 2012; Zhou et al., 2013, 2018). 

5.2. Redox conditions 

Redox conditions during deposition of the Datangpo Mn-ore deposits 
have received extensive study. While early metallogenic models inferred 
a link between Mn-carbonate precipitation and episodic oxygenation 
events (Yu et al., 2016; Xiao et al., 2017, 2019), more recent Fe- 
speciation studies have inferred uniformly anoxic conditions (Ye et al., 
2018; Ma et al., 2019; Cheng et al., 2020; Tan et al., 2021). A detailed 
Fe-speciation record for the study units was generated by compiling data 
from the Lijiawan (Li-T et al., 2022), the Xixibao, Gaodi, and Chang
xingpo (Cheng et al., 2021), and the Daotuo sections (Wei et al., 2020). 
These sections are all located in the same graben (or subbasin) as the 
ZK4207 core, their distances from that core being no more than 15 km 
(and only 3 km for Xixibao). Because of their mutual proximity, the Fe- 
speciation results obtained in these earlier published studies are appli
cable to the present study units and allow for the development of a local 
understanding of redox conditions. The Fepy/FeHR of the Mn-carbonate 
interval from the Gaodi, Xixiao, Changxingpo and Daotuo sections 
have median (range) values of 0.56 (0.09–0.77), 0.58 (0.43–0.67), 0.61 
(0.58–0.80), and 0.61 (0.22–0.71) respectively (Wei et al., 2020; Cheng 
et al., 2021) (Fig. 7). Li-T et al. (2022) also reported Fepy/FeHR value of 

0.5 for a Mn-carbonate sample from Lijiawan Section. Fe-speciation data 
of Mn-carbonate samples from these five different sections suggest a 
uniform and dominantly ferruginous-anoxic condition during deposition 
(Li-T et al., 2022; Wei et al., 2020; Cheng et al., 2021), with black shale 
intervals characterized by euxinic-anoxic conditions (Cheng et al., 
2021). 

Redox proxies in the present study, i.e., [Corg/P]corr (Fig. 4), CuEF and 
UEF (Fig. 5), indicate non-euxinic conditions (See Section 4.4). In addi
tion to the present study, similar Corg/P, CuEF and UEF have been 
recorded within equivalent Mn-carbonate intervals of sections else
where: Corg/P in ZK0408 from Xiushan has a median (range) value of 
46.2 (15.1–111) (Ai et al., 2021); the Changxingpo and Xixibao sections 
record UEF of 1.39 (1.25–1.44) and 1.69 (1.06–2.25) respectively (Pan 
et al., 2021); a section from Songtao County produced CuEF and UEF of 
2.56 (1.67–4.09) and 1.62 (1.33–2.12) respectively (Tan et al., 2021). 
Given low atmospheric and ocean oxygen levels during the Cryogenian 
(Wallace et al., 2017), the strong stratification of the Nanhua Basin is 
likely to have predisposed its deep waters toward anoxia (Lansard et al., 
2012; Li et al., 2012). The redox proxy data of the present and earlier 
studies most parsimoniously indicate a uniformly ferruginous-anoxic 
deep-water redox condition during deposition of the Mn-carbonate in
terval of the Datangpo Formation. 

5.3. Primary productivity conditions 

Primary productivity is another fundamental parameter of aquatic 
ecosystems, playing a pivotal role in ecological energetics, nutrient- 
element cycling, and environmental redox conditions (Falkowski 
et al., 1998; Schoepfer et al., 2015; Middelburg, 2019). Primary pro
duction is thought to have been high in the Nanhua Basin during the 
post-Sturtian interval owing to rising sea levels and a greater nutrient 
supply from a connection with the open ocean (Li et al., 2012; Ai et al., 
2021; cf. Lyons et al., 2003). High productivity is supported by the high 
TOC content and evidence of intense benthic microbial activity observed 
in the thin section of samples from Mn-ore intervals of Datangpo For
mation (Fig. 2) (Ye et al., 2018; Yu et al., 2016; Ma et al., 2019). To this 
end, decomposition of abundant organic matter may have contributed to 
the production of alkalinity (HCO3

– and CO3
2–) essential for Mn-carbonate 

precipitation (Neumeister et al., 2016, 2020; Wittkop et al., 2022). 
Primary productivity in paleodepositional systems can be evaluated 

quantitatively based on organic carbon accumulation rates (OCAR) 
(Algeo et al., 2013; Schoepfer et al., 2015). OCAR is calculated as TOC ×
ρ × LSR, where ρ is sediment density and LSR is linear sedimentation 
rate. Based on radiometric ages and strata thicknesses, LSRs in the 
Datangpo Formation range from 8.8 to 88 m Myr− 1 with a mean of 48 m 
Myr− 1, or ~ 0.05 mm yr− 1 (Yu et al., 2016). Given typical densities for 
Mn-carbonate (3.12 g/cm3) and shale (2.06–2.67 g/cm3), we adopted an 
average density of 2.7 g/cm3 for the Mn-ore samples, which consist of 
mixtures of carbonate and clays. On this basis, we calculated an average 
OCAR of 47 × 103 mg C/cm2/kyr, which is higher than the primary 
production estimated for ~ 90 % of modern shelf settings documented in 
Longhurst et al. (1995; see table 2 in Schoepfer et al., 2015). 

Carbon isotopes provide further insights into productivity and car
bon cycling. The parallel changes in δ13Ccarb and δ13Corg through drill
core ZK4207 (Fig. 4) suggest that: (1) primary signals are preserved with 
little or no diagenetic overprint (Meyer et al., 2013); (2) the offset be
tween δ13Ccarb and δ13Corg (i.e., Δ13Ccarb-org) reflects photosynthetic 
fractionation (Hayes et al., 1999; Johnston et al., 2012); and (3) 
terrestrial plant inputs played no role during the Neoproterozoic (Bur
dige, 2007; Peng et al., 2019), although land-based microbial mats were 
likely important (Lalonde and Konhauser, 2015; Planavsky et al., 2021). 
These observations support interpretations of the δ13Ccarb and δ13Corg 
records in terms of changes in marine primary productivity rates, 
although probably at a global scale and not just within the Nanhua Basin 
itself. 

Regional primary productivity rates in the Nanhua Basin were also 

Fig. 7. FeHR/FeT versus B/Ga for the Gaodi section (data from Cheng et al., 
2021). Note: the interval at Gaodi for which data is plotted is equivalent to the 
study interval in drillcore ZK4207. 
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likely influenced indirectly by hydrothermal activity, as suggested by a 
significant positive correlation between TOC and Eu/Eu* (r = +0.45, p 
(α) < 0.01) (Supplemental data). Hydrothermal activity can deliver 
excess nutrients to a basin for both deep-water chemosynthesis and 
surface-layer photosynthesis (e.g., McCollom, 2000; Boyd and Ellwood, 
2010; Resing et al., 2015; Jenkyns, 2010; Gomez-Saez et al., 2017; 
Stüeken et al., 2023). Alternatively (or additionally), enhanced degla
cial/postglacial weathering of continental regolith may have supplied 
excess nutrients and fueled primary production during deposition of the 
study interval (cf. Planavsky et al., 2010; Swanson-Hysell et al., 2010). 
The negative shift (ca. –1 ‰) of carbon isotopes during the HBI probably 
indicates introduction of 13C-depleted carbon into the basin by hydro
thermal activity, possibly in the form of thermogenic methane and/or 
CO2 (Frieling et al., 2016). 

Watermass salinity was related, either directly or indirectly, to pri
mary productivity in the Nanhua Basin, as shown by negative correla
tions of B/Ga with δ13Ccarb (r = –0.45, n = 12; p(α) = 0.14) and δ13Corg 
(r = –0.40, n = 12; p(α) = 0.20) (Fig. 8). Possibly, the correlation of B/ 
Ga with δ13Ccarb is incidental, deriving from independent relationships 
of Mn to δ13Ccarb and B/Ga. Yet two mechanisms may link watermass 
salinity with primary productivity: (1) salinity variation may affect the 
mass, composition, and distribution of the phytoplankton community 
within an ecosystem (Little et al., 2017); and (2) water-column strati
fication due to vertical salinity variations enhances deep-water anoxia 
and, thus, organic matter preservation, and it may also influence 
surface-water productivity through suppression of nutrient upwelling 
(Almogi-Labin et al., 1993). 

5.4. Relationship of Mn precipitation to water-column stratification in the 
Nanhua Basin 

The transfer of Mn2+ to the sediment depends critically on watermass 
redox conditions. Mn is normally in dissolved form under anoxic to 
euxinic to ferruginous-anoxic conditions, but it is readily removed from 
the water column to the sediment by precipitation of solid-phase Mn 
(IV)-oxides or hydroxides under oxic conditions (Bender et al., 1977; 

Wedepohl, 1978; Frakes and Bolton, 1992; Rio-Salas et al., 2013; 
Kuleshov, 2017; Li-WJ et al., 2022). In a stratified water column, two 
standard models exist for Mn-carbonate formation: (1) the “diagenetic 
model”, in which aqueous manganese is precipitated as solid-phase Mn 
(IV)-oxyhydroxides in the upper oxic layer, sinks to the seafloor and 
becomes reductively dissolved, and is then reprecipitated as Mn(II)- 
carbonate minerals—a process that is commonly mediated by hetero
trophic microbial activity that involves oxidation of organic matter 
during the early diagenetic stage (Okita et al., 1988; Fan et al., 1992; 
Polgári et al., 2012a, 2012b, 2016, 2019; Neumeister et al., 2016, 2020; 
Yu et al., 2016, 2019; Li et al., 2022; Yan et al., 2022; Dong et al., 2023); 
and (2) the “direct precipitation model”, in which Mn2+ in anoxic deep 
waters reacts directly with HCO-

3, precipitating Mn-carbonate minerals 
whose solubility product (Ksp) is exceeded (Pingitore et al., 1988; 
Herndon et al., 2018; Wittkop et al., 2020). 

Mn precipitation in the Nanhua Basin was strongly influenced by the 
prevailing salinity-redox-productivity conditions and their relationship 
to water-column stratification. The development of stratification, linked 
to vertical variation in water-column salinity, was a dominant control 
on: (1) the redox status of the deep watermass (Cheng et al., 2021), and 
(2) the upwelling of nutrients and, thus, primary productivity rates and 
the sinking flux of organic matter on which the microbial community 
that catalyzed Mn-carbonate precipitation depended (Yu et al., 2019). 
The close relationships between Mn content and the redox proxies Corg/ 
P (r = +0.48, p(α) < 0. 1), CuEF (r = +0.44, p(α) < 0. 1) and FeHR/FeT (r 
= +0.46, p(α) < 0. 01) indicate that Mn-ore deposition was strongly 
modulated by redox conditions, being favored by more reducing con
ditions. Positive covariation of these redox proxies with the B/Ga 
salinity proxy (r = +0.44, +0.44 and + 0.46, respectively; p(α) < 0.1) 
(Figs. 6, 7) further supports a close relationship between watermass 
salinity and deep-water redox conditions, and their links to Mn-ore 
deposition, even though there is no significant correlation between B/ 
Ga and Fepy/FeHR. 

Fluctuations of watermass salinity and redox conditions within the 
Nanhua Basin led to alternations between high-salinity ferruginous 
conditions that favored Mn-carbonate precipitation and low-salinity 
euxinic conditions that favored Mn-rich black shale accumulation 
(Fig. 5; cf. Cheng et al., 2021). Increases in watermass salinity and pri
mary production were linked to Mn-carbonate formation in several 
ways. First, salinity rises linked to either seawater influx or hydrother
mal emissions are likely to have provided nutrients, leading to an 
increased OM flux initiated by enhanced primary production, and 
which, in turn, fueled the microbial metabolisms that catalyze precipi
tation of Mn-carbonates (Okita, 1992; Polgári et al., 2012a, 2012b, 
2016, 2019; Yu et al., 2019). Second, intensified water-column stratifi
cation linked to a salinity gradient would have enhanced bottom water 
anoxia and, thus, organic matter preservation. These relationships are 
reflected in significant correlations of Mn with TOC (r = +0.50, p(α) <
0.01), δ13Corg (r = –0.50, p(α) < 0.1) and δ13Ccarb (r = -0.61, p(α) < 0.05; 
Fig. S2), suggesting that primary production and organic carbon sinking 
fluxes were related to the rate of Mn-carbonate precipitation. Third, 
anaerobic decomposition of organic matter generates abundant alka
linity in the form of CO3

2– and HCO3
– for precipitation of Mn-carbonate 

minerals such as rhodochrosite (Neumeister et al., 2015, 2016, 2020). 
The low δ13Ccarb values of the Mn-rich Middle Unit imply massive 
organic matter decomposition, which would have promoted precipita
tion of Mn-carbonates by providing large amounts of extra alkalinity (e. 
g., CO3

2– and HCO3
–). Thus, a combination of enhanced primary pro

duction, organic matter influx, high alkalinity and reducing (i.e., fer
ruginous) conditions created a favorable environment for formation of 
Mn-carbonate deposits through either the “diagenetic model” or the 
“direct precipitation model”, although the former mechanism is likely to 
have been dominant in the Cryogenian Nanhua Basin (see Section 5.6). 

Fig. 8. B/Ga versus (A) δ13Corg and (B) δ13Ccarb for drillcore ZK4207.  
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5.5. Mn sources and hydrothermal activities 

Various sources of manganese have been proposed for formation of 
Mn-carbonate deposits, including riverine inputs (mainly particulate 
Mn) (Bender et al., 1977; Slemons et al., 2010), hydrothermal vents 
(mainly dissolved Mn) (Usui et al., 1986; Mandernack and Tebo, 1993; 
Camprubí et al., 2008; Hulten et al., 2017), and aeolian dust (particulate 
Mn) (Guieu et al., 1994; Mendez et al., 2010) (Fig. 9). For the Cenozoic 
Ocean, Glasby (1988) estimated that 90 % of the Mn inventory was 
sourced from hydrothermal venting. For this reason, deep waters 
generally have higher concentrations of Mn2+, a condition that can be 
enhanced under reducing conditions owing to the high solubility of Mn 
(II). Consequently, the abyssal seafloor serves as a locus for Mn accu
mulation (Bazilevskaya, 2006), e.g., in the form of manganese crusts 
near oceanic spreading centers (Narejo et al., 2019). Evidence for hy
drothermal exhalative events in the Cryogenian Nanhua Basin has been 
extensively documented (e.g., Zhang et al., 2015; Wu et al., 2016; Zhou 
et al., 2018; Wang et al., 2019). Hydrothermal activity would have led to 
a watermass that was strongly enriched in Mn2+ given the low atmo
spheric oxygen levels of the Cryogenian and the limitation of 
atmospheric-oceanic gas exchange caused by Snowball-Earth ice shelves 
(Li et al., 2012; Zhang et al., 2015; Yu et al., 2016). It is worth noting 
that low atmospheric pO2 during the Cryogenian could have also 
permitted large erosional fluxes of Mn2+ from continents to oceans 
through weathering, a process enhanced by glaciation (e.g., Mn deposits 
of the Santa Cruz Formation; Freitas et al., 2021). 

Covariation between Nd and Sr isotopes is commonly effective at 
fingerprinting the sources of geomaterials. In our dataset, εNd and 
87Sr/86Sr show significant negative and positive correlations with Mn, 
and significant positive and negative correlations with Al2O3, respec
tively. These observations demonstrate that Nd and Sr in the study units 
have two sources with distinctly different isotopic compositions, one 
source being dominant in the Mn-carbonates and the other in the clay 
fraction. The source dominating the Mn-carbonates was a non-detrital 
component characterized by low εNd and high 87Sr/86Sr, consistent 
with hydrothermal inputs from old upper crustal systems (DePaolo and 
Wasserburg, 1979) but not from deep crustal and mantle reservoirs 
(White, 2023). Conversely, the source dominating the Mn-rich shales 
was a detrital component characterized by high εNd and low 87Sr/86Sr, 
suggesting erosion of relatively young (juvenile) crustal materials (Yu 
et al., 2016, 2019). 

In the ZK4207 study section, Mn covaries positively with Eu/Eu*SN (r 
=+0.64, p(α) < 0.01) and 87Sr/86Sr(660 Ma) (r =+0.69, p(α) < 0.01) and 
inversely with εNd(660 Ma) (r = –0.63, p(α) < 0.01) (Figs. 10, S2). The 
covariant relationships of Mn to these hydrothermal proxies (see Section 
4.2) suggest that Mn(II) accumulating in the sediment as deep-water Mn- 
carbonates was primarily hydrothermally sourced (cf. Peter and Good
fellow, 1996). On an Fe/Ti versus Al/(Al + Fe + Mn) discriminant plot, 
~90 % of study samples fall within the hydrothermal field (Fig. 10C; 
Marchig et al., 1982; Boström, 1983), providing further support for 
strong hydrothermal influences. This relationship is underscored by 
significant correlations of Fe/Ti and Al/(Al + Fe + Mn) with the other 
hydrothermal proxies: Eu/Eu*SN (r = +0.40, p(α) < 0.05; r = –0.58, p 
(α) < 0.01), 87Sr/86Sr(660 Ma) (r = +0.50, p(α) < 0.01; r = –0.68, p(α) <
0.01), and εNd(660 Ma) (r = –0.67, p(α) < 0.01; r = +0.63, p(α) < 0.01, 
respectively). High total sulfur contents (mean 1.9 ± 0.7 %) and 
frequent negative △34S values provide additional support for hydro
thermal activity in the Nanhua Basin (Fig. 4; Wang et al., 2019). 
Although hydrothermal fluxes were almost certainly the dominant 
source of Mn to the Nanhua Basin, other sources (e.g., terrestrial 
weathering) may have contributed a minor fraction (Fig. 10C). Finally, 
the similar elemental chemistry of these Mn-bearing rocks to those of 
modern hydrothermal sediments (Fig. 6 in He et al., 2014), as well as 
their relatively high depositional temperatures (~200 ◦C), as recon
structed from quartz-inclusion and bitumen reflectance data from the 
manganese ores, support a link to hydrothermal activity (Chen and 

Chen, 1992; He et al., 2014). 
In the Nanhua Basin, the spatial distribution of Mn-ore deposits is 

closely associated with the fault zones that delineate the NE-SW- 
trending horsts and grabens defining the deep structure of the basin 
(Wang and Li, 2003; Zhou et al., 2013, 2018; Wang et al., 2019; table 1 

Fig. 9. Discriminant plots of proxies with mixed hydrothermal and hydroge
nous (or clastic) origins for the study interval in drillcore ZK4207. (A) Eu/Eu*SN 
versus Mn (Peter and Goodfellow, 1996). (B) 87Sr/86Sr(660 Ma) versus εNd(660 

Ma). (C) Fe/Ti versus Al/(Al + Fe + Mn). Values on the two-component mixing 
line represent the percentage of hydrothermal contribution (Marchig et al., 
1982; Boström, 1983). 

W. Wei et al.                                                                                                                                                                                                                                     



Precambrian Research 403 (2024) 107309

11

in Wu et al., 2016). Submarine volcanic debris and associated volca
nogenic structures are frequently present within the manganese-rich 
interval, and the close relationship between manganese abundance 
and these features reflects the influence of hydrothermal activity (Zhou 
et al., 2013; Kuang et al., 2014). Fault zones are commonly character
ized by high fluxes of Mn2+ related to hydrothermal emissions and 
submarine volcanism (Kearey et al., 2009; Zhou et al., 2022), and the 
fault zones bounding the horsts and grabens of the Nanhua Basin are 
known to have been intermittently active from the Late Neoproterozoic 
through the Early Paleozoic (Charvet, 2013; Yao et al., 2014). All these 
considerations signify a close relationship between fault zones and hy
drothermal venting in the Cryogenian Nanhua Basin. 

Petrographic observations and Raman analysis provide further evi
dence of the link between hydrothermalism and Mn-carbonate precipi
tation (Fig. 3). Sample LB-304 records a mm-scale alternation of 
kutnohorite and Ca-rhodochrosite laminae. Although both minerals 
require elevated aqueous Mn concentrations, Ca-rhodochrosite 
[MnxCa1-x(CO3), where x is typically > 0.9] requires higher aqueous 
Mn2+/Ca2+ ratios than kutnohorite [CaMn(CO3)2] (Gao et al., 2021). 
Since Mn2+ levels were controlled by vent emissions, the alternating 
precipitation of Ca-rhodochrosite and kutnohorite laminae is likely to 
record the episodicity of hydrothermal activity in the deep Nanhua 
Basin. This inference is consistent with the relationship between hy
drothermal proxies and Mn-carbonate intervals (Fig. 10), and further 
supported by the significant correlation between Mn and hydrothermal 
proxies (Eu/Eu*SN, r = +0.64; p(α) < 0.01; εNd(660 Ma), r = –0.64; p(α) 
< 0.01) (Fig. S2). The strong correlation between hydrothermal proxies 
and B/Ga, indicating hydrothermal fluid influx may have regulated 
water column salinity (Fig. 11), through which the precipitation of Mn- 
carbonate was affected as well. The close relationship between hydro
thermal activities and precipitation of Mn-carbonate holds regardless of 
whether Mn-carbonate formation proceeded via the “diagenetic model” 
(Yu et al., 2016, 2019) or the “direct precipitation model” (Wittkop 
et al., 2020). 

Based on geological settings and controls on sedimentary Mn 
enrichment, the Red Sea represents an appropriate modern analog for 
the post-Sturtian Nanhua Basin. The Red Sea is a narrow ocean basin 
formed by rifting of the Arabian and African plates, which opened 
during the Oligocene (~30–20 Ma) (Wilson, 1963; Khalil and McClay 
et al., 2001; Rasul et al., 2015). It features massive hydrothermal activity 
and large-scale iron-manganese oxyhydroxide precipitation (Taitel- 

Goldman et al., 2009). Influx of hydrothermal brines provides signifi
cant amounts of Mn2+ and nutrients to the basin, which subsequently 
stimulate primary production and microbial activity (Boyd and Ellwood, 
2010; Resing et al., 2015). The high salinity of its deep watermass results 
from discharge of hot, high-salinity brines, promoting a stratified water 
column (Blanc and Anschutz, 1995; Laurila et al., 2015). Mn2+ is 
oxidized to nMnO2⋅mH2O and forms todorokite in the alkaline surface 
layer in which oxygen levels are high, while manganite forms in the 
oxygen-deficient and low-pH deep layer (Butuzova et al., 1990; Scholten 

Fig. 10. The modern marine Mn cycle. Numeric values are estimated fluxes in units of μg cm− 2 10-3 yr− 1 (except for labeled concentrations in units of ppb) (modified 
from Bender et al., 1977; McLennan and Murray, 1999). 

Fig. 11. B/Ga versus (A) Eu/Eu*SN and (B) initial εNd(t) versus B/Ga for 
drillcore ZK4207. 
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et al., 2017). Differences in the Mn-mineral types of the Red Sea (i.e., 
todorokite and manganite) (Butuzova et al., 1990) versus the Nanhua 
Basin (i.e., rhodochrosite) may be due to unique aspects of their 
watermass chemistry, e.g., the Red Sea features relatively higher oxygen 
levels and dissolved Fe/Mn ratios (Butuzova et al., 1990; Roik et al., 
2018) than the Cryogenian Nanhua Basin. Nonetheless, similarities in 
tectonic environment, fault-related hydrothermal activity, and paleo
environmental boundary conditions between the modern Red Sea and 
Cryogenian Nanhua Basin suggest that rifting and associated hydro
thermalism are commonly key factors in the development of massive 
Mn-ore deposits (Balkhanov and Razvalyayev, 1981; Zhou et al., 2013; 
Wu et al., 2016). 

5.6. Microbial catalysis of Mn-carbonate precipitation 

Microbial activity is widely regarded as playing a fundamental role 
in the formation of Mn-ore deposits, being a key feature of the “diage
netic model” (Tazaki, 2000; Polgári et al., 2012b, 2016; Biondi and 
Lopez, 2017; Yu et al., 2019; Huang et al., 2022). Bacterially mediated 
reduction of Mn(IV) and/or Mn(III) coupled to the oxidation of organic 
matter (into HCO3

–) and the formation of Mn-carbonate minerals 
(rhodochrosite, kutnohorite) has been documented for various Mn-ore 
deposits (e.g., Okita et al., 1988; Polgári et al., 2012b, 2016; Yu et al., 
2016; Dong et al., 2023). The enzymatic oxidation of Mn(II) to Mn(IV) 
by microbes is a common process in natural environments as well, with 
reported microbial precipitates including Mn minerals of almost every 
possible valence state (Ferris et al., 1987; Adams and Ghiorse, 1988; 
Mandernack and Tebo, 1993). The oxidation of manganese can in turn 
fuel the growth of chemolithoautotrophic microorganisms (Yu and 
Leadbetter, 2020). Aerobic Mn(II)-oxidizing bacteria typically inhabit 
environments proximal to hydrothermal settings, and catalyze the 
oxidation of Mn(II) with O2 under a wide range of temperature condi
tions and Mn concentrations (Mandernack et al., 1995; Bargar et al., 
2009; Wang et al., 2023). Ancient Mn deposits that exhibit microbially 
mediated metallogenic mechanisms range in age from Precambrian to 
Mesozoic (Mita and Miura, 2003; Polgári et al., 2012b; Planavsky et al., 
2013; Biondi and Lopez, 2017; Daye et al., 2019; Yu et al., 2019; Yu and 
Leadbetter, 2020; Biondi et al., 2020; Huang et al., 2022; Dong et al., 
2023), suggesting an antiquity to the role of microbes in the metallo
genesis of Mn-ore deposits; this process requires free O2 so Mn(II) 
oxidation is often directly linked to the origin of cyanobacteria (Pla
navsky et al., 2013). Dissolved Mn2+ may also be oxidized through 
biogeochemical pathways, including homogeneous photochemical, and 
enzymatically mediated electron-transfer process, in low-oxygen envi
ronments (Tebo and Emerson, 1985; Van Cappellen et al., 1998; Tebo 
et al., 2004, 2007; Liu et al., 2020). 

One consequence stemming from high primary productivity levels 
and associated organic matter sinking fluxes during the post-Sturtian 
interglaciation is that the sediment surface in the Nanhua Basin would 
have promoted microbial activity and hence precipitation of Mn- 
carbonates through the “diagenetic model”, which involves anaerobic 
microbial Mn(IV) reduction (Yu et al., 2019). In anoxic deep waters, 
these Mn(IV)-reducing bacteria may use Mn(IV) as an electron acceptor 
to mediate the oxidation of organic electron donors (e.g. Vandieken 
et al., 2012, 2014; Wang et al., 2022). Indeed, it has been proposed that 
this was likely a common scenario in post-Sturtian marginal-marine 
basins (Pruss et al., 2010; Bosak et al., 2011). 

Biophysical interactions between microbial mats and the underlying 
sediments may have produced the microbially induced sedimentary 
structures that widely characterize this period and that provide impor
tant biosignatures for ancient microbial communities (Polgári et al., 
2012a). It is not impossible that mineralized biomats are what we 
observe in thin sections of the 1st Member of the Datangpo Formation 
under low magnification (Fig. 2A-C), but as discussed above, it would 
not be clear what metabolism was being used given the bottom waters 
were anoxic. Under higher magnification, what appears to be bacterial 

structures and a fabric-like lacework texture within the clay and Mn- 
carbonate matrix become visible (Fig. 2D-G). Unlike the concept of a 
biomat, these bacterial structures could simply be the fossilized rem
nants of sedimentary heterotrophs that oxidized accumulated plank
tonic biomass that settled out from the upper water column. 
Interestingly, in situ micro-Raman spectroscopy of sample LB-304 
revealed a cyclic alternation of Ca-rhodochrosite, kutnohorite, and 
quartz laminae. These features are analogous to those in the Jurassic 
Úrkút Mn-carbonate deposit in Hungary, in which fossilized Mn- 
reducing heterotrophic bacteria are present (Polgári et al., 2012a). Mn 
(II) generated by those bacteria was subsequently oxidized via a mi
crobial enzymatic reaction in a dysoxic environment at the sediment–
water interface, resulting in accumulation of fine-grained Mn(IV) oxides 
that were later transformed to Ca-rhodochrosite via microbial processes 
within the sediment (Polgári et al., 1991, 2012b). In this process, metals 
are typically electrostatically bound to the anionic cell wall and sur
rounding extracellular polymeric substances, and these areas then act as 
nucleation sites for crystal growth (Konhauser, 1998). What is different 
in the present study units is that mineralization was likely the result of 
Mn(IV) reduction in an anoxic setting, with subsequent nucleation and 
growth of Mn-carbonates. This process accounts for the commonly 
observed mineralization of microbial fossils visible in thin sections in 
areas adjacent to Mn-carbonate minerals (Fig. 2). We therefore infer that 
Mn-carbonates in the Cryogenian Nanhua Basin formed mainly through 
diagenetic processes, although direct precipitation of some fraction of 
these Mn-carbonates cannot be completely discounted. A diagenetic 
origin for the Mn-ore deposits is further supported by the δ13Ccarb proxy, 
which shows a significant negative correlation with Mn content (r =
–0.61, n = 14; p(α) < 0.05) as well as extremely low values in the HBI 
(ca. –7 to –6 ‰) (Fig. 4). 

5.7. Salinity-based model of manganese enrichment for ore deposits in 
Nanhua Basin 

Based on the foregoing analysis, we propose an integrated model to 
account for the watermass salinity, paleoenvironmental conditions, Mn 
sources, and microbial processes that led to formation of Mn-carbonate 
ores in the 1st Member of the Cryogenian Datangpo Formation. In this 
model, salinity variation plays a fundamental role, as indicated by the 
strong correlation between Mn content and B/Ga (r = +0.59; p(α) <
0.0001; Fig. 12). Salinity variation in the Nanhua Basin was due to 
glacial meltwater runoff to its surface layer during the Sturtian degla
ciation combined with hydrothermal inputs to its deep layer, producing 
a strongly stratified water column characterized by an oxygen-depleted 
and ferruginous deep watermass. In this context, hydrothermal activity 
provided large amounts of Mn2+ that were upwelled into shallow oxic 
waters where it was then oxidized to Mn(IV) by some of the bacterial 

Fig. 12. Mn versus salinity proxy B/Ga for the study interval in drillcore 
ZK4207 and Gaodi Section (Cheng et al., 2021). 
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constituents in the planktonic community. Then, the MnO2 and dead 
cells settled to the seafloor where the organic material accumulated into 
what is now visible as the organic laminae. With the MnO2 and biomass 
now in anoxic sediments, dissimilatory Mn(IV) reduction subsequently 
produced Mn(II), allowing large-scale Mn-carbonate precipitation 
(Fig. 13A). During intervals of weaker hydrothermal activity, the deep 
watermass was characterized by lower salinity, reduced Mn2+ levels, 
euxinic conditions, more limited organic matter sinking fluxes and 
reduced microbial activity, favoring Mn-shale accumulation over Mn- 
carbonate production (Fig. 13B). 

Peak hydrothermal activity occurred during deposition of the Middle 
Unit (the “high-boron interval” or HBI of Yu et al., 2022), characterized 
by relatively higher productivity and more reducing conditions (Figs. 3, 
4). As discussed above, enhanced nutrient inputs from massive hydro
thermal discharge stimulated primary productivity and promoted 
organic carbon sinking fluxes, which yielded porewater HCO3

– during 
remineralization of organic matter. This additional alkalinity generated 

conditions favorable for the precipitation of Mn-carbonates. The 
covariation of these paleoenvironmental conditions (paleosalinity, 
redox condition, hydrothermal activities) with the precipitation of Mn- 
carbonate is most readily observed at the basal (899.2–901.3 m) and 
HBI (891–896 m) intervals of the Datangpo Formation (Figs. 3, 4). The 
intimate relationship between watermass salinity and Mn enrichment is 
further supported by their similar vertical trends (Fig. 4) and significant 
positive correlations of Mn content with the salinity proxy B/Ga (r =
+0.59; p(α) < 0.01) (Fig. 12). Collectively, these observations establish 
an intimate relationship between the megallogenesis of Mn-ore deposits 
and watermass salinity. 

6. Conclusions 

Here, we present an integrated study of the petrology, major and 
trace elements, and isotope geochemistry of Mn-carbonates from the 1st 
Member of the Cryogenian Datangpo Formation in the Nanhua Basin, 

Fig. 13. Depositional model for the metallogenesis of Mn-carbonates in the Datangpo Formation, Nanhua Basin, China. SWI: the sediment–water interface. (A) 
Strong hydrothermal activity: the basin was characterized by higher Mn levels, stronger water column stratification, higher primary productivity and OM fluxes, 
enhancing precipitation of MnCO3. (B) Weak hydrothermal activity: the basin was characterized by lower Mn levels, weaker water column stratification, lower 
primary productivity and OM fluxes, and reduced precipitation of MnCO3. The relative ratio of Mn to alkalinity (HCO3

–) is higher in A than in B, with vertical 
variation of Mn and HCO3

– levels presented as profiles on the left side of the block diagrams. 
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China. Results indicate that abundant Mn2+ in Cryogenian Basin was 
sourced mainly from hydrothermal emissions, which also led to a rise in 
watermass salinity. The rise of watermass salinity promoted the strati
fication of the water column and supported the development of a fer
ruginous anoxic deep watermass. Extra nutrients related to 
hydrothermal emissions stimulated primary microbial productivity in 
the water column (e.g., Mn(II) oxidation). Enhanced water-column 
stratification promoted organic matter sinking fluxes that, in turn, 
fueled dissimilatory Mn(IV) reduction, which in turn, produced addi
tional porewater alkalinity and Mn2+. These changes collectively 
established conditions favorable for Mn-carbonate precipitation. Evi
dence of microbial activity in thin sections indicates the critical role of 
heterochemotrophic microbes in the reduction of Mn(IV) and the for
mation of Mn-carbonate deposits in the Nanhua Basin, similar to the 
Úrkút Mn-carbonate deposits in Hungary. 

The salinity-based Mn-carbonate model established in the present 
study may serve as a counterpart to the alkalinity model of Yu et al. 
(2022), with these two models jointly providing a comprehensive un
derstanding of the metallogenesis of the Datangpo Mn-ore deposits. 
Reconstructed salinity-based watermass conditions and formation 
pathways for the Mn-carbonates of the Cryogenian Nanhua Basin 
established here may further provide insights into the paleoenvir
onmental conditions required for generation of massive Mn-carbonate 
deposits formed in other epeiric sea settings. 
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