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9.18.1 Introduction

Giant hematite and martite–goethite iron ores (�56% Fe)

hosted in iron formations (IFs) are the principal source of

iron for the global steel industry. Given their economic impor-

tance, IFs have been extensively studied, but many aspects of

their origin remain enigmatic because modern analogues are

unknown. IFs were deposited, albeit intermittently, for more

than 3 billion years, but as the Earth system changed funda-

mentally, so did the style of IF deposition. Aspects of, and

changes in, the Earth system that are most relevant to the

deposition of IF include volcanism, evolution of the biosphere,

and ocean composition (e.g., Bekker et al., 2010; Holland,

2005; Huston and Logan, 2004). In this chapter, interplays

among these factors and their respective links to the deposition

of IF are discussed. The late-stage alteration processes respon-

sible for the transition of IFs to economic-grade iron ore

are not discussed (for recent reviews of these processes see

Beukes et al., 2008; Clout and Simonson, 2005; Evans et al.,

2013; Morey, 1999; Rasmussen et al., 2007; Taylor et al.,

2001).

The abundance of IFs in Precambrian successions was used

in early studies to argue for a largely anoxic atmosphere and

ocean system (e.g., Cloud, 1973; Holland, 1984). It is generally

accepted that accumulation of such large masses of iron re-

quired the transport of Fe(II), because Fe(III) is essentially

insoluble at circumneutral pH values in the presence of even

traces (<1 mM) of dissolved oxygen. Although earlier studies

invoked a continental source of iron for IFs (Borchert, 1965;

James, 1954; Lepp and Goldich, 1964), the discovery of mod-

ern seafloor-hydrothermal systems shifted emphasis to the

hydrothermal processes in the deep ocean as the most likely

source (e.g., Isley, 1995). Although a biological role in iron

precipitation was suggested over a century ago (e.g., Gruner,

1922; Harder, 1919; Leith, 1903), the importance of micro-

organisms began to receive greater acceptance only with the

discovery of microfossils present in Paleoproterozoic IFs in the

Animikie Basin of the Lake Superior region (e.g., Barghoorn and

Tyler, 1965; Cloud, 1965) and, more recently, as the under-

standing of their significance in the modern iron cycle increased

dramatically. Cloud (1965, 1973) further suggested that the

redox state of the atmosphere was buffered at low levels of free

oxygen, primarily by the reducing potential of the oceans and

continents, including continuous IF deposition. Subsequently,

it was ascertained that the Animikie IFs were deposited at

�1.88 Ga, well after the Great Oxidation Event (GOE) at

�2.32 Ga (e.g., Bekker et al., 2004), and that many of the

Gunflint-type microfossils, interpreted earlier as oxygenic

photosynthesizers, were instead likely metabolic iron oxidizers

(Golubic and Lee, 1999; Planavsky et al., 2009) on the basis of

their morphology and geochemical data for host rocks.

Acquisition of precise geochronologic constraints for Pre-

cambrian sedimentary successions also helped challenge the

earlier assumption that IFs were continuously deposited before

the rise of atmospheric oxygen (e.g., James, 1983). It is now

believed that deposition of large, economically important

IFs was instead restricted in time and coincided with mantle

plume breakout events, as recorded by the secular distri-

bution of large igneous provinces (LIPs), dike swarms, and

submarine-emplaced mafic volcanic rocks (e.g., Isley and
Abbott, 1999). These events not only provided the dissolved

ferrous iron for IF, but also tempered the oceanic redox state

and its chemistry by increasing the seafloor-hydrothermal

flux of reductants such as H2 and H2S. In addition, associated

with the deposition of IF, higher oceanic spreading rates, in-

creased submarine and subaerial volcanic activity, high sea level,

greenhouse conditions, and an enhanced production of volca-

nogenic massive sulfide (VMS) deposits are predicted conse-

quences of mantle plume breakout events (e.g., Barley et al.,

2005; Condie et al., 2001; Isley and Abbott, 1999). Considering

that the typical duration for emplacement of LIPs is on the order

of 10 My (Ernst and Buchan, 2001), a similar duration for the

deposition of individual IFs should be expected unless a number

of unrelated LIPs were emplaced closely in time (superplume

breakout event).

Emerging age constraints provide further insights into IF

genesis. For example, if the oceanic and atmospheric redox states

are a major control on iron transport and deposition, why then

were a number of giant IFs deposited at �2.45 Ga? Deposition

of these IFs occurred shortly before the first significant rise in

atmospheric oxygen – GOE, thus suggesting a genetic link.

Tectonically, it also coincides with a time of supercontinent

assembly (e.g., Barley et al., 2005). If atmospheric oxygen rose

during the early Paleoproterozoic, then what factors gave rise to

a second prominent peak in IF deposition at �1.88 Ga after a

significant gap in large IF deposition? This pulse of IF deposition

seemingly occurred during a mantle plume breakout event and

supercontinent assembly (Bekker et al., 2010; Ernst and Bell,

2010; Hamilton et al., 2009), again suggesting a link.

The disappearance of IFs at �1.8 Ga has historically been

explained by either complete ocean oxidation (Holland, 1984)

or development of sulfidic conditions in the deep ocean

(Canfield, 1998). Neither of these models fully addresses the

mechanism(s) that caused the ocean redox state prior to

1.88 Ga to change back to anoxic ferruginous conditions,

and, subsequently after �1.88 Ga, to either oxygenated or

sulfidic conditions. A suboxic redox state of the deep ocean

after �1.85 Ga was proposed by Slack et al. (2007, 2009) on

the basis of Ce anomalies and abundant hematite and magne-

tite in VMS-related, deep-water, oxide-facies exhalites of late

Paleoproterozoic and Mesoproterozoic age. A variable, both

geographically and temporally, deep-ocean redox state, includ-

ing the presence of anoxic but nonsulfidic waters, in the

mid-Proterozoic has also been recently proposed (Planavsky

et al., 2011; Poulton et al., 2010).

It has long been argued that Archean and Paleoproterozoic

(e.g., 1.88 Ga) IFs were deposited in entirely different settings

and have different mineral compositions and textures (e.g.,

Klein and Beukes, 1992). Almost all Archean IFs consist pre-

dominantly of interbanded iron- and silica-rich layers and were

generally, but not universally, deposited in relatively deep-water

settings, as they typically lack evidence for wave or storm action.

A large portion of the �1.88 Ga IFs was, in contrast, deposited

close to, or above, storm- and fair-weather wave base, and

commonly has granular textures. These differences reflect not

only distinctions in depositional settings but also different

mechanisms for Fe(II) oxidation and Fe(III) precipitation.

Following a gap between �1.85 and 0.7 Ga, when only

small IFs were deposited, large IFs reappeared at the end of

the Neoproterozoic, apparently related to snowball Earth
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events (Kirschvink, 1992). These are mineralogically simple

iron and silica oxide deposits that, in some places, are also

stratigraphically associated with economic phosphorus and

manganese deposits (Klein and Beukes, 1992). These Neopro-

terozoic IFs and Phanerozoic IFs, termed ironstones, are not

typically voluminous, relative to the much larger Archean and

Paleoproterozoic deposits. Ironstones appear to be temporally

linked to marine anoxic events in many cases and comprise

iron silicates and oxides without the chert enrichment, which is

characteristic of Precambrian deposits, but generally with ap-

preciable phosphorus contents. Significantly, Archean, Paleo-

proterozoic, and Phanerozoic IFs and ironstones are

temporally associated with organic matter-rich black shales

(e.g., Simonson, 2003; Van Houten and Arthur, 1989). Other

Phanerozoic examples of Fe-rich rocks, commonly termed

umber and jasper, developed above volcanic rocks and likely

formed through either diffuse seafloor-hydrothermal venting

or direct precipitation from seawater as fallout from hydrother-

mal plumes (Alt, 2003; Elderfield et al., 1972; Grenne and

Slack, 2005). A modern analogue of umber deposits has re-

cently been described in relation to ultradiffuse hydrothermal

venting at the base of Loihi Seamount, at 5000 m below sea

level (Edwards et al., 2011a,b).

Recent research has also highlighted that tectonic processes,

in addition to mantle plume events and changes in iron oxi-

dation mechanisms through time, imposed a major control

over the deposition and preservation of IFs. The growth of

continents created crucial shallow-water depositories and en-

hanced preservation of IFs in the geological record (Simonson,

2003). Before large landmasses developed considerable free-

board, IFs were likely deposited in close association with vol-

canic edifices and were often recycled into the mantle by

subduction. Certain tectonic settings, such as isolated to

semi-isolated back-arc, rift, and foreland basins, have been

invoked to explain the iron source to, and basin-scale water

column redox stratification in, basins, in which IFs were de-

posited (e.g., Beukes and Gutzmer, 2008; Ohmoto et al.,

2006). Further, it is now possible with high-precision geochro-

nology not only to correlate IFs of similar ages in different

basins but also to establish that IF deposition in one basin

coincided with the lack of iron enrichment in another. None-

theless, it remains difficult in the case of Precambrian basins to

separate basin and paleogeographic controls from those deter-

mined by ocean circulation and upwelling processes. Exhalites

that formed distal to deep-water VMS deposits in open-marine

settings help in evaluating ancient ocean redox states (Slack

et al., 2007, 2009). This information can be directly compared

with inferences from correlative IFs in order to constrain the

redox conditions of the coeval global ocean.

Although tectonic processes exert a first-order control on Fe

flux to the ocean, the marine redox state as established by

oxygen content and oxidation state of sulfur and nitrogen de-

termines whether iron and manganese can be transported in

solution within the ocean. In addition, secular changes in

seawater silica concentrations influenced the composition of

IFs, specifically their silica and trace element contents. It is

generally accepted that seawater silica contents were high dur-

ing the Precambrian, but it is unclear whether silica in seawater

declined dramatically at the beginning of the Phanerozoic

(Siever, 1992), or if silica concentrations remained high until
the Cretaceous when the emergence of diatoms removed most

silica from seawater (Grenne and Slack, 2003).

In this chapter, we place the deposition of IFs in a frame-

work of broader changes in tectonics, mantle plume activity,

and oceanic and atmospheric redox states in order to assemble

a new integrated model for their deposition. It is highlighted

that no single parameter is solely responsible for IF deposition.

Rather, complex give-and-take relationships among all of these

parameters determined the time intervals and settings in which

IFs were deposited throughout Earth history, as well as changes

in their mineralogy and composition. Figure 1 shows the global

distribution of large IFs (�1000 Gt) and selected smaller

deposits discussed below.
9.18.2 Definition of IF

The term ‘iron formation’ has often been restricted to strati-

graphic units composed of layered, bedded, or laminated rocks

(Figures 2–5) that contain 15 wt% or more iron, and where

the iron minerals are commonly interlayered with quartz,

chert, or carbonate (Gross, 1980; James, 1954). James (1954)

defined four facies of IF: silicate, carbonate, oxide, and sulfide.

Sulfide-facies IFs are pyritic carbonaceous shales or slates, and,

as such, not typically considered IF in the strictest sense. Barren

or mineralized, seafloor-hydrothermal, iron-rich exhalites and

sulfidic cherts are in some cases also assigned to the IF category

and host some important gold deposits in Archean terranes.

The former, in many cases, represent facies of VMS deposits,

whereas the latter could be either exhalites or hydrothermally

replaced IF (Groves et al., 1987). As a result, many Archean

(sulfide-facies) IFs described in the literature are not true IFs

(Hofmann et al., 2003). All other facies are generally interbedded

with variably recrystallized chert (Simonson, 2003).Oxide-facies

IF consists predominantly of magnetite or hematite, whereas

carbonate-facies varieties contain siderite or ankerite as major

constituents. The mineralogy of silicate-facies IFs is more com-

plex and depends to a large extent on the degree of metamor-

phism. Under relatively low-grade metamorphic conditions,

at the biotite zone and below, greenalite, minnesotaite, stilpno-

melane, chamosite, ripidolite (Fe-chlorite), riebeckite, and

ferri-annite may be present. At higher grades, cummingtonite,

grunerite, pyroxene, garnet, and fayalite can occur.

On the basis of interpreted depositional settings, IFs have

classically been subdivided into Superior type and Algoma type

(Gross, 1980; see also discussion in Bekker et al., 2012).

Superior-type IFs were regarded as having been deposited in

nearshore continental-shelf environments, because they typi-

cally are interbedded with carbonates, quartz arenite, and

black shale, but only with minor amounts of volcanic rocks

(Gross, 1980). Algoma-type IFs are generally hosted within

volcanic rocks, and, in some cases, in graywacke, and appar-

ently formed by exhalative-hydrothermal processes close to

volcanic centers. Barrett et al. (1988a) argued, on the basis of

geochemical signatures, that some Algoma-type deposits

formed within restricted basins like the modern Red Sea.

Algoma-type IFs are present in volcano-sedimentary sequences

of greenstone belts ranging in age from Eoarchean to Phaner-

ozoic (Goodwin, 1973; Huston and Logan, 2004; Isley and

Abbott, 1999; James, 1983; Peter, 2003; Peter et al., 2003).
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Figure 1 Major sediment-hosted iron formations of the world discussed in the text. 1, Maly Khinghan Formation; 2, Yerbel Formation; 3, Jacadigo
Group (Urucum district); 4, Bisokpabe Group; 5, Chestnut Hill Formation; 6, Holowilena Ironstone; 7, Braemar Iron Formation; 8, Vil’va and Koyva
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47, Transvaal Province (Griquatown Iron Formation, Kuruman Iron Formation, Penge Iron Formation); 48, Hamersley basin iron formations (Boolgeeda
Iron Formation, Weeli Wolli Formation, Brockman Iron Formation (Joffre Mbr), Brockman Iron Formation (Dales Gorge Mbr), Mt. Sylvia Formation,
Marra Mamba Iron Formation); 49, Cauê Formation; 50, Indian Creek Metamorphic Suite; 51, Ruker Series; 52, Benchmark Iron Formation;
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Although common in Superior-type IF, granular iron forma-

tions (GIFs) are generally absent within Algoma-type deposits,

which are typically banded with chert and Fe oxide, silicate, or

carbonate pairs on various scales (Figure 2(a)). IFs older than

3.0 Ga appear to be predominantly of the Algoma type, which

likely reflects the scarcity of preserved cratonic successions

prior to this time. Mineralogically, Algoma- and Superior-

type IFs are similar.

Algoma-type IFs are generally thinner and smaller in lateral

extent relative to Superior-type IFs and rarely exceed 107Mt

(Huston and Logan, 2004), although the former are more

abundant in terms of numbers of deposits and geographic

distribution (Beukes and Gutzmer, 2008). Typically Algoma-

type IFs are less than 50 m thick and rarely extend to more than

10 km along strike. However, these characteristics do not indi-

cate that all Algoma-type IFs were originally smaller, as most

had been affected by deformation and tectonic dismember-

ment, implying that their original size and extent are likely

underestimated (Gole and Klein, 1981). By contrast, Superior-

type IFs are typically laterally more extensive and thicker than

Algoma-type IF. Some major, Superior-type sedimentary de-

posits (not orebodies) initially contained an estimated 108Mt

at 15 wt% Fe (Isley, 1995; James, 1983).

Clear differentiation between Superior andAlgoma types of IF

is difficult in Archean successions affected by strong deformation

and shearing that produced tectonic dismemberment or
imbrication of genetically unrelated sequences. For example,

IFs interbedded with quartz arenite and carbonate are locally

interlayered with thick packages of mafic–ultramafic extrusive

rocks. Although some of these sequences may represent primary

stratigraphic units that were deposited in extensional continental

or arc settings (e.g., Srinivasan and Ojakangas, 1986), others

could have formed by the tectonic imbrication of cratonic

cover sequences and overlying piles of mafic–ultramafic rocks

(e.g., Dirks et al., 2002).

This distinction is further complicated by the full gradation

between Superior- and Algoma-type IFs that emerged as studies

advanced. For example, bimodal volcanic rocks, tuff beds, and

stilpnomelane-rich shale are commonly associated with IFs in

the Animikie basin of North America and the Hamersley

Group of Western Australia, both being typical examples of

Superior-type IFs. On the other hand, some Paleoarchean and

younger IFs in greenstone belts occur in sedimentary succes-

sions containing minimal recognizable volcanic material.

However, the geochemistry and lithology of IFs and host

rocks clearly indicate that both Algoma- and Superior-type IFs

were deposited contemporaneously with submarine volcanism

and intense hydrothermal activity. Therefore, the two types of

IF can be considered as idealized end-members for precipitates

ranging from proximal hydrothermal deposits to distal hydrog-

enous deposits that all precipitated from seawater coeval with

seafloor-hydrothermal activity.

Figure&nbsp;1
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Figure 2 (a) Typical appearance of jaspilitic iron formation from the Early Archean Nimingarra Iron Formation of the Gorge Creek Group in the North
Pilbara. A network of fractures introduces ore-grade specular hematite into the iron formation, and although distal to any known iron ores, this kind of
alteration is virtually background for all banded iron formations (BIFs) in the Pilbara, showing that BIFs everywhere have experienced the ore-forming
events to some degree. The degree of alteration casts doubts on the myth that BIFs are virtually unmodified from their sedimentary precursor.
(b) Alternating layers of magnetite–hematite and chert in BIF. The magnetite bands are laminated to vaguely laminated to massive and even at the small
scale truncate laminations (primary layering) in the chert. Field of view is 2 cm. (c) Close-up of BIF in (b) showing regularly spaced laminae of hematite in
chert bands and erosional truncation of lamination in bedded chert. Field of view is 6 mm. (d) Finely laminated hematite–chert bands. Field of view
is 6 mm. (e) Rhythms in BIF resembling thinly bedded density-current deposits (cf. turbidites), the lowest (dark) unit contains detrital grains. The green
color is ferrostilpnomelane. Coarse structure in the chert interval is typical of early (precompaction) diagenetic chert and comprises irregular
laminae of chert and relict laminae of ferric-stilpnomelane, obscured by rhombic carbonate. (f) Massive, graded bed from BIF composed of detrital
grains of shale in a cherty matrix with euhedral grains of magnetite. The blue color is due to fine-grained, metamorphic riebeckite. (g) Graded massive to
plane-laminated bed of stilpnomelane-rich tuffaceous siltstone–mudstone within BIF. The lower part of the section is similar to the rhythmic bedding
in (e), but ferrostilpnomelane (green) has been oxidized to ferricstilpnomelane (dark), and magnetite euhedra have been replaced by hematite (red),
although much magnetite remains. White-speckled appearance of the tuffaceous bed is due to fine-grained, diagenetic rhombic ankerite-ferroan
dolomite. (b–d and f) Dales Gorge Member of the Brockman Iron Formation, Hamersley Province, Western Australia; (e and g) Joffre Member of the
Brockman Iron Formation, Hamersley Province, Western Australia.
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The gradient in hydrothermal influence on IF is also

reflected in their geochemistry. Compositions of the Algoma-

type end-member typically record local volcanic or hydrother-

mal conditions, rather than being representative of the large-

scale chemistry of the oceans during their formation. In

contrast, the deposition of Superior-type end-member reflects
processes that probably acted on a global scale, and thus they

are likely more representative of seawater composition

(Huston and Logan, 2004). However, the potential influences

by nearby cratonic areas also need to be considered (e.g.,

Alexander et al., 2009). In general, for discerning whether the

geochemistry of IF reflects local or global seawater

Figure&nbsp;2
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compositions, a simple distinction between Algoma and Supe-

rior types is insufficient. Instead, one has to constrain the

tectonic setting and degree of isolation of the basin in which

IFs were deposited, relative to the global ocean, before any

inferences regarding composition and redox state of ancient

seawater can be made.
9.18.3 Mineralogy of IF

IFs are defined by their unusual mineralogy, which includes

mostly silica and a wide range of Fe-rich and Al-poor min-

erals. Most IFs comprise layers containing magnetite and/or

hematite, which alternate on the scale of several millimeters

with bands of microcrystalline silica, forming microbands

(Figures 2 and 3). Well-banded IFs (Figures 2 and 3),

known as banded iron formations (BIFs), are mostly re-

stricted to Archean and early Paleoproterozoic sequences.

Large portions of late Paleoproterozoic IFs from the Superior

and Slave cratons in North America and the Capricorn Oro-

gen in Western Australia comprise sand-sized grains that

commonly are cross-bedded and lack the finely laminated

textures of BIF; these are generally referred to as GIFs

(Figure 5). GIFs are typically intercalated with well-laminated
(a) (

(c) (

(e) (

Figure 3 Photomicrographs from the Dales Gorge Member of the Brockman
formation comprising several larger clusters of magnetite euhedra in a band o
in a matrix of hematite, silica and carbonate. Field of view is 1.25 mm. (c) Alter
magnetite. Field of view is 0.3125 mm. (d) Laminae of fine-grained hematite
laminated stilpnomelane and fine-grained siderite. Field of view is 0.625 mm.
spherules largely replaced by stilpnomelane. Field of view is 6 mm.
IFs, Fe-rich mudstone, mafic and felsic volcanic rocks, and

carbonate and sandstone.

The mineralogy of BIF and GIF from the best preserved

sequences is remarkably uniform, comprising mostly silica,

magnetite, hematite, Fe-rich silicate minerals (stilpnomelane,

minnesotaite, greenalite, and riebeckite), carbonate minerals

(siderite, ankerite, calcite, and dolomite), and, less commonly,

sulfides (pyrite and pyrrhotite).

Chert (and crystalline quartz in metamorphosed IFs) is

ubiquitous in all types of IF. In BIF, chert layers are commonly

banded, alternating with millimeter-thick laminae of Fe-rich

silicate and carbonate minerals. Individual laminae are wavy to

wrinkly and, locally, appear to truncate against overlying

laminae. In places, chert forms precompaction nodules draped

by compacted laminae, suggesting an early paragenesis for the

nodular chert. In GIF, the chert ‘peloids’ show open packing,

indicating precompaction lithification.

Magnetite is widespread in IFs, where it occurs as euhedral,

fine- to coarse-grained crystals (Figures 2 and 3). It is particu-

larly abundant in cherty Fe-rich layers as laminae comprising

dense clusters of intergrown euhedra (Figure 3(a)–3(c)). Mag-

netite commonly is replaced by hematite (termed martite) and

locally replaces carbonate minerals. Magnetite is clearly a sec-

ondarymineral that formedmostly during the late history of the
b)

d)

f)

Iron Formation, Hamersley Province, Western Australia. (a) Banded iron
f laminated hematite. Field of view is 2.5 mm. (b) Two magnetite euhedra
nating laminae of silica and iron oxides. Hematite cores are surrounded by
alternating with bands of chert. Field of view is 0.625 mm. (e) Band of
(f) Impact ejecta layer in the Dales Gorge S-band #4 containing melt

Figure&nbsp;3
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iron ore formation associated with metamorphism and defor-

mation (Ayres, 1972; Ewers and Morris, 1981; LaBerge, 1964).

Hematite is the most common Fe-oxide mineral in IFs,

where it typically occurs with magnetite in millimeter- to

centimeter-thick layers (Figure 3). Together with magnetite,

hematite defines the lamination in most chert layers. Hematite

may also be present in some intercalated mudstones, but in

this case, it is much less abundant than magnetite (or pyrite).

The timing of hematite growth is texturally ambiguous, al-

though rare hematite spheroids (Ayres, 1972) likely represent

some of the earliest components of IFs (Figure 4(e) and 4(f)).

If they did form very early, then the precursor phase probably

was a form of ferric oxyhydroxide, such as ferrihydrite.

Stilpnomelane is an Fe- and K-rich, Al-poor, hydrous

silicate mineral, with a composition that is similar to that of

sedimentary nontronite, an iron-rich, alumina-poor smectite.
(a) (b

(c) (d

(e) (

Figure 4 Samples from the Dales Gorge Member of the Brockman Iron For
structures composed of stilpnomelane in a chert matrix. Field of view is 0.625
‘bow-ties.’ Field of view is 0.3125 mm. (c) Coarse euhedral ankerite rhomb enc
0.625 mm. (d) Back-scattered electron image of inclusion-rich apatite in a ch
crystals (opaque) preserved in a chert–hematite layer. Field of view is �0.3 m
containing numerous minute inclusions (speckled) in a matrix of chert (dark
Stilpnomelane is diagnostic of lower greenschist facies meta-

morphic conditions. It is the most common Fe-silicate in many

IFs, where it occurs as highly pleochroic plates and fibers,

forming solid bands interlaminated with secondary carbonate

(Figure 3(e)), and as irregular mattes and sheaves. Stilpnome-

lane is the main constituent of most mudstones associated

with IFs, and is also a common component of chert and tuff

layers and impact ejecta layers (Figure 3(f)) intercalated with

IFs. For example, it replaces volcanic glass in felsic tuff beds

and, locally, fine-grained stilpnomelane-filled spheres occur in

laminated chert beds (Ayres, 1972; Figure 4(a)). At higher

temperatures (>400 �C), stilpnomelane is replaced by biotite.

Minnesotaite is an Fe- and Mg-rich hydrous silicate that

typically is less abundant than stilpnomelane, although there

are some exceptions in sections of the late Paleoproterozoic IFs

in the Superior craton. Minnesotaite occurs as radiating plates
)

) 100 mm

f)

mation, Hamersley Province, Western Australia. (a) Numerous spherical
mm. (b) Fine-grained sprays of minnesotaite needles arranged in typical
losing crystals of hematite and riebeckite in a chert matrix. Field of view is
ert band. (e) Plane-polarized light image of numerous minute hematite
m. (f) Reflected light image of (e) showing hematite crystals (white)
gray). Field of view is �0.3 mm.

Figure&nbsp;4
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and needles, forming common ‘bow-tie’ texture (Figure 4(b))

and forms during metamorphism and late-stage hydrothermal

alteration.

Riebeckite is a Na-rich amphibole that occurs in most BIFs

from the Hamersley region in Western Australia and in the

Kaapvaal craton of South Africa (Beukes, 1973; Klein and

Gole, 1981). Riebeckite-rich layers are characteristically blue

in hand specimen. Riebeckite forms clusters of randomly ori-

ented fibers, which locally may be aligned to define a structural

fabric. Paragenetic relations indicate that riebeckite formed late

in the history of IFs. The fibrous form of riebeckite (crocidolite)

forms veins that are a source of asbestos; these are overpressure

veins that formed during regional folding (Krapež et al., 2003).

Greenalite is a pale green Fe-silicate that occurs in many IFs

but typically is less abundant than stilpnomelane and minne-

sotaite. Greenalite is rare in the Hamersley and Transvaal BIFs,

but where present occurs as a late-stage, secondary mineral.

However, in GIF from the Superior craton, greenalite is more

abundant and appears to be among the earliest minerals to

have formed (Klein, 2005). Nevertheless, greenalite is not an

original sedimentary mineral.

Siderite is the most common carbonate in BIFs, typically

occurring as minute, single, rhomb-shaped crystals or massive

layers of microcrystalline crystals. In some beds, siderite may

comprise >50% of the rock. Small siderite nodules are com-

mon in some layers, where they display evidence of differential

compaction, thus indicating that the nodules probably formed

before deep burial. The texturally earliest siderite is present as

minute (<20 mm) spheroids, which occur in some IFs and

intercalated mudstone from the Hamersley Province (Ayres,

1972). This siderite appears to have replaced or overgrown an

earlier phase, which occurs in the core of some crystals, indi-

cating a diagenetic origin for the siderite. Sideritic BIF in many

cases is not a primary sedimentary facies, because it can be

closely linked to near-ore alteration.

Ankerite and ferroan dolomite occur in many chert layers

typically as coarse, euhedral rhombs that overgrow and contain

inclusions of chert, hematite, magnetite, and Fe-silicate min-

erals (Figure 4(c)), indicating that these carbonates were

among the last minerals to form.

Trace minerals include pyrite, apatite, monazite, xenotime,

zircon, ilmenite, and K-feldspar. Trace amounts of apatite have

been reported from most IFs, forming euhedral crystals con-

taining abundant inclusions of silica and other matrix minerals

(Figure 4(d)). Apatite, even from very low metamorphic grade

IFs, lacks significant carbonate and fluorine substitution into

the crystal structure (e.g., Li et al., 2011), which would be

expected if the mineral had formed during early marine dia-

genesis. Therefore, apatite is likely a burial diagenetic and

metamorphic product. Apatite formation is probably associ-

ated with phosphorus exclusion during recrystallization of iron

oxides or oxidation of buried organic matter (Li et al., 2011).

Apatite is the most abundant phosphate mineral, but monazite

and xenotime are also present in some IFs. Monazite forms

minute (typically<100 mm), inclusion-rich aggregates in mud-

stone, whereas xenotime occurs mostly as overgrowths on

zircon grains, which are likely diagenetic in origin. Zircon is

rare in IFs, but can be locally abundant in millimeter- to

centimeter-thick layers of felsic tuff (Pickard, 2002, 2003).

Xenotime overgrowths can be dated in situ by the U–Pb
SHRIMP method to obtain ages for IF upgrading (e.g.,

Rasmussen et al., 2007).

In conclusion, no unambiguously original sedimentary

minerals occur even in the best-preserved IFs that only under-

went very low-grade metamorphism. Microspherical and nod-

ular textures appear to be among the earliest features of the IFs;

however, it is highly unlikely that the minerals associated with

those textures are original.
9.18.3.1 Precursor Sediments

Since all IFs have undergone significant modifications even

during diagenesis and prehnite–pumpellyite facies metamor-

phism, their mineralogy reflects a combination of factors, in-

cluding the original bulk composition of the precursor

sediment, diagenetic and metamorphic conditions, and post-

depositional fluid flow. Effects of increasing temperature and

pressure have yielded a progressive change in mineralogy

through replacement and recrystallization, increase in grain

size, and obliteration of primary textures (Klein, 2005).

The alternating layers of magnetite and hematite are com-

monly interpreted to have formed from a ferric iron oxyhydr-

oxide rain to the sediment pile. During early diagenesis, the

ferric oxyhydroxide was apparently converted to hematite. It is

possible that ferric iron and dissolved/absorbed ferrous iron

combined to form a mixed-valence iron phase that later was

converted to magnetite during late diagenesis and metamor-

phism. However, the magnetite could have also formed en-

tirely during metamorphism, in cases with organic matter

acting as the reductant (e.g., Perry et al., 1973; Tompkins and

Cowan, 2001). Although the texture of most of the magnetite

and hematite grains indicates a secondary, postdepositional

origin, rare spheroids of hematite, about 5–20 mm in diameter,

as mentioned above, have been considered to be among the

earliest textures known in BIFs (Ayres, 1972). The spheroids are

interpreted to represent original iron oxyhydroxides that were

converted to hematite during diagenesis or regional metamor-

phism. Similar spheroidal textures comprising solid stilpno-

melane and siderite are also present (Figure 4(a); Ayres, 1972).

Silica is widely considered to have been delivered to the

sediments absorbed on iron oxyhydroxides, scavenged with

organic matter, and precipitated from the water column at

the sediment–water interface in colloidal form (e.g., Fischer

and Knoll, 2009; Krapež et al., 2003; Grenne and Slack, 2005).

An alternative interpretation is that the chert formed largely

beneath the sediment–water interface as a replacement of a

precursor sediment (Krapež et al., 2003).

Recently, Rosing et al. (2010) proposed that the ubiquitous

coexistence of magnetite and siderite in Archean and Paleopro-

terozoic IFs could be used to constrain early Earth’s atmo-

spheric composition. They suggested that atmospheric CO2

and CH4 concentrations have been consistently overestimated

in modeling early Earth’s energy balance to explain the pres-

ence of liquid water on Earth at the time when, in the Sun’s

youth, solar luminosity was greatly reduced. Rosing et al.

(2010) suggested that the coexistence of siderite and magnetite

in IFs represents an assemblage that is close to thermodynamic

equilibrium with the atmosphere, thus constraining the partial

pressures of CO2 and H2. However, both these minerals are of

diagenetic and metamorphic origins. Further, even in the
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unlikely case that IF mineral assemblages formed during early

diagenetic conditions in an environment close to chemical

equilibrium with seawater, they cannot be used to constrain

atmospheric carbon dioxide levels. For instance, dissimilatory

iron-reducing bacteria have been observed to generate magne-

tite even at very high aqueous SCO2 concentrations (�50 mM;

Behrends and Van Cappellen, 2007) and headspace pCO2

(�0.2 atm; Roh et al., 2003). Therefore, pCO2 values greatly

elevated above modern levels do not preclude the formation of

magnetite at any stage in IF evolution. IF mineral assemblages

thus cannot be used to place constraints on past atmospheric

CO2 concentrations. More broadly, since almost all Fe-bearing

minerals in IFs formed at different times during diagenesis or

metamorphism, their chemical and isotopic compositions are

unlikely to reflect chemical equilibrium with seawater. Accord-

ingly, the use of mineral assemblages to infer composition of

the environment in which they formed, or extrapolations re-

garding composition of the atmosphere–ocean system, is typ-

ically plagued with uncertainties.

9.18.3.1.1 Secular trend in Fe mineralogy of GIFs
The secular change in the mineralogy of the same sedimentary

facies may, however, provide insight into environmental

change. Specifically, the mineralogy of GIFs may record

atmosphere–ocean redox state and evolution leading to depo-

sition of IFs. GIFs first appear at �2.6–2.5 Ga in South Africa,

WesternAustralia, andBrazil (Beukes andKlein, 1990; Simonson

and Goode, 1989; Spier et al., 2007). However, most granules

and sand-sized grains in these older GIFs consist of minerals

having reduced and mixed-valence iron (e.g., magnetite,

Fe-silicates, and carbonates); only rarely have hematite granules

been observed and never as coated grains or oolites (Beukes and

Klein, 1990; Simonson and Goode, 1989; Spier et al., 2007).

In contrast, the extensive GIFs of the Animikie basin that

were deposited at �1.9 Ga contain oolites, coated grains, and

granules made of minerals having predominantly oxidized iron

(e.g., hematite), although reduced or mixed-valence coated

grains, and granules are also present. Similar to the Animikie

basin, younger Proterozoic IFs and Phanerozoic ironstones

having coated grains are predominantly composed of ferric iron.

The secular trend in the distribution of mixed-valence iron

silicates is poorly established. Early work suggested that glau-

conite did not form in open-marine, shallow-water settings

until the Phanerozoic (Cloud, 1955). However, this view was

rebutted by Kimberley (1989), who described Proterozoic ex-

amples including the �2.3 Ga Gordon Lake Formation

(Chandler, 1986) and emphasized that Archean examples are

missing from the rock record. Indeed, mixed-valence iron sili-

cate minerals such as berthierite, chamosite, and glauconite are

absent in shallow-water Archean successions, even though they

became abundant during the GOE (e.g., ironstone of the Time-

ball Hill Formation; Dorland, 1999). We infer that the lack of

these minerals in shallow-water, Archean settings reflects low

oxygen concentration that inhibited formation ofmixed-valence

Fe-silicates. In contrast, in Archean deep-water settings, mixed-

valence Fe-silicates such as the precursors to stipnomelane and

greenalite are common, indicating an upside-down redox pro-

file similar to that documented in the Transvaal basin by com-

bined sedimentary facies and mineralogical study (Beukes and

Klein, 1990). Walker (1984) linked this counterintuitive redox
structure to decreasing organic carbon fluxes offshore. Thus, the

study of iron oxidation in mixed-valence Fe-silicate minerals

holds potential to reveal information about ocean oxidation in

the past. Specifically, the marked absence of mixed-valence iron

minerals prior to �2.3 Ga is one of several lines of evidence

pointing to the lack of a discrete redoxcline and predominantly

anoxic marine conditions in the Archean.
9.18.4 Depositional Setting and
Sequence-Stratigraphic Framework

Depositional environments of IFs range from deep water, be-

yond or above a continental slope for BIF to shallow water,

above storm- and fair-weather wave base for GIF. Both BIF and

GIF were deposited during periods of high or rising sea level

(cf. Fralick and Pufahl, 2006; Krapež et al., 2003; Simonson

and Hassler, 1996).

Detailed sedimentologic studies of IFs have been conducted

in the Hamersley Province of Western Australia, and in the

Transvaal and Griqualand West structural basins of South

Africa. There is no evidence from these studies that deposi-

tional environments were restricted. For instance, in the

Hamersley Province, basin architecture did not change conclu-

sively during the deposition of BIF and associated non-BIF

facies, but rather the change that did occur involved a higher

hydrothermal flux of reduced iron (Fe2þ) to the basin (Krapež

et al., 2003). It is therefore likely that increased hydrothermal

activity rather than changes in basin architecture was the first-

order control on that flux.

Studies of BIF of the Hamersley Province have documented

the presence of ironminerals and chert in paired layers that vary

from 0.2- to 2.0-mm-thick microbands to 10- to 50-mm-thick

mesobands. Initially, Trendall and Blockley (1970) (see also

Trendall, 1990) suggested that suchmicrobands andmesobands

could be correlated basin-wide, which led to the inference that

BIFs are chemical varves (Morris and Horwitz, 1983; Trendall,

1973). More recent studies, however, have shown that only

the chert mesobands can be correlated (Krapež et al., 2003).

Through facies and sequence-stratigraphic analyses, Krapež

et al. (2003) and Pickard et al. (2004) concluded that all chert

in BIF is diagenetic in origin. Moreover, they concluded that

chert mesobands are siliceous equivalents of modern-day

seafloor hardgrounds (Figure 2), in which silica replaced

precursor sediment at or below the sediment–water interface.

Three-dimensional and microscale lenticularity of chert and

relics of precursor sediment within lamina sets and discontin-

uous bands (Figure 2(b) and 2(c)), as well as erosion surfaces

on bedded cherts, show that chert has a replacement origin and

formed during early diagenesis, prior to compaction.

Minute spheroids (�10 mm diameter) documented in the

Brockman Iron Formation (Hamersley Group) were inter-

preted to record paragenetically early textures (Ayres, 1972).

The spheroids are distributed along laminae in bedded chert,

and along the chert laminae of BIF. Assuming that lamina sets

in BIF originated from a process similar to that responsible for

the lamina sets in lithofacies interbedded with BIF, they can be

assumed to have a density current origin (Krapež et al., 2003).

This density current interpretation is supported by the presence

in BIF of two bedding styles of mesobands: microbanded and
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tabular-bedded (Figure 2); the latter typically is massive or

weakly laminated (Ewers and Morris, 1981; Morris, 1993).

Massive mesobands grading upwards into microbanded meso-

bands resemble density-current intervals, and are preserved at

various scales (Figure 2(e) and 2(f)); some of those massive

intervals are internally graded and contain tabular, mm-scale

detrital fragments of shale. Occurrences of erosional truncation

of draped laminae (Krapež et al., 2003) also support the

density-current interpretation (Figure 2(b) and 2(c)). Resedi-

mentation occurred either by bottom currents or gravity-driven

turbidity currents, and the resulting sediment bodies may have

been contourite drifts (Krapež et al., 2003). The precursor

sediments to BIFs were therefore microgranular in texture.

Krapež et al. (2003) concluded that the precursor sediments

could have been granular hydrothermal muds, composed of

iron-rich smectite and particles of iron oxyhydroxide and

siderite that were deposited on the flanks of submarine

volcanoes.

The sequence architecture of formations containing BIF is

identical to that of clastic sedimentary rocks that accumulated

beyond the continental slope, comprising lowstand fans of

shelf-derived sediment overlain by condensed sections of pela-

gites, hemipelagites, or intrabasinal clastic sediment (e.g., Haq,

1991). Depositional sequences in the Dales Gorge Member of

the Hamersley Province, documented by Krapež et al. (2003),

comprise lowstand density-current deposits (dolostone,

graded shale, and rare conglomerate) overlain by a condensed

section of BIF. Bedded chert defines the top of each deposi-

tional sequence by showing: (1) sharp, erosional contacts with

overlying dolostone or mudstone; and (2) gradational contacts

into underlying BIF. In contrast, the contacts from lowstand

mudstone to condensed-section BIF are transitional (Krapež

et al., 2003).

Lowstand deposits change from dolostone-shale to shale-

only toward the southwest in the Hamersley Province, indicat-

ing a paleoslope to the southwest (Simonson et al., 1993); an

overall thinning of lowstand deposits accompanies this down-

paleoslope change. Lowstand deposits in distal sections con-

tain BIF units that are identical to BIF in the condensed

sections. This pattern suggests that the precursor sediments to

BIF characterized basin sedimentation not only during rising

and high sea level, but also during some lowstands, beyond the

limits of shelf-derived resedimented sediments. Isopachs of BIF

presented by Trendall and Blockley (1970) show that thickness

variations define mounds elongated across the paleoslope.

These trends, combined with the sequence architecture, indi-

cate that the source of precursor sediments for BIF was within

the basin realm and that the depositional system was some

form of contourite current. A contourite drift is a sedimentary

deposit that accumulates along the continental slope, from

density currents that follow the contours of the basin floor,

possibly entering the basin from a distal submarine canyon.

For the precursor sediments to BIF, the deep-sea currents may

have traveled down canyons headed in volcanic complexes.

The implication is, therefore, that some precursor sediments

to BIF were hydrothermal clays or clays derived by submarine

weathering of basalts that accumulated on the slopes of, and

among, submarine volcanoes (Krapež et al., 2003).

This model for deposition of the Dales Gorge BIF is appli-

cable to other deep-water BIF such as those in the
correlative Transvaal (South Africa), Krivoy Rog (Ukraine),

Kursk Magnetic Anomaly (KMA, Russia), and Quadrilátero

Ferrı́fero (Brazil) successions (Appendix 1). It is, however,

not applicable to shallow-water IFs, such as those in the Pon-

gola and Witwatersrand supergroups (Beukes and Cairncross,

1991), where responses to rising and falling sea levels differed

according to sequence stratigraphy. Detailed sedimentological

models for the Algoma-type IFs or thin BIF interbedded with

shallow-water deposits, which integrated a basin-scale and

sequence-stratigraphic approach, are not available and there-

fore it is premature at this point to discuss their sedimentolog-

ical setting relative to the predictive architecture of deep- or

shallow-water depositional environments.

GIFs are clastic sedimentary rocks that are largely restricted,

at least in terms of preservation, to continental basins of Paleo-

proterozoic age. Paleoproterozoic basins surrounding the Su-

perior craton of North America constitute the type area, where

two lithofacies were recognized for a long time: slaty and cherty

GIF (Ojakangas, 1983). The so-called slaty lithofacies is iron-

rich shale comprising alternating, millimeter-scale, parallel-

and wavy-laminated layers of iron-oxides or -silicates and

chert, interbedded with lenses of grainstone. Lamina sets are

similar to those in BIF, being made up of a basal layer rich in

iron oxides and an upper chert-rich layer; gently-dipping ero-

sive truncations draped by mudstone are also present (Pufahl

and Fralick, 2004).

The cherty lithofacies is a grainstone with a cherty cement;

in situ and reworked stromatolites are common (Ojakangas,

1983; Planavsky et al., 2009; Pufahl and Fralick, 2004). This

lithofacies comprises interconnecting lenses of trough cross-

stratified grainstone. The largest lenses typically have a basal

layer of intraformational breccia derived from reworking of the

underlying iron-rich mudstone.

Millimeter- to centimeter-scale, grain-size grading in iron-

rich shale indicates that the depositional process was gravity

settling. Occurrence of a siliciclastic component to the

mudstone/shale supports suspension deposition from density

currents. Density-current settling is common along current-,

wave-, and storm-dominated shores, such that micrograded

sets of mudstone are essentially the ambient sedimentary

style. Traction currents likely were key in the deposition of

granular beds within the mudstone sequences. Sets are

channel-shaped, showing internal trough cross-stratification.

Evidence of wave- and current-formed sedimentary structures

and hummocky cross-stratification is abundant (e.g., Ojakan-

gas, 1983; Pufahl and Fralick, 2004), establishing that the

depositional environment was a shallow-water shelf disturbed

by storms and influenced by significant sea-level changes. The

environment also was coeval with bimodal volcanism, indicat-

ing almost certainly a volcano-tectonic influence. In general,

the stratigraphic pattern is one of alternating packages of

storm-influenced event beds and background density-current

deposits, passing upwards into shallow-water grainstones of

the cherty lithofacies (Figures 5 and 6(a)). The sequence-

stratigraphic architecture therefore is upwards thickening and

coarsening, reflecting deposition during rising and high sea

level on a shelf. In the shallowest parts of the Animikie basin,

these shallow-water facies can be capped by exposure surfaces,

indicating IF filled the accommodation space. Although con-

trasting with the sequence architecture of BIF of the Hamersley
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Figure 5 Middle Proterozoic GIFs. (a) Trough cross-bedded GIF of the c.1.88 Ga Temiscamie Iron Formation, Mistassini basin, Quebec. (b) Quartz-rich
sandstone overlying ooidal ironstone and containing large rounded clasts of cemented ooidal ironstone and wavy heavy mineral bands composed of
hematite; Train Range Member of the Mullera Formation, Constance Range, Northern Territory–Queensland border, Australia. (c) Graded bed
comprising granules and ooides. Field of view is 2 cm. (d and e) Rounded granules comprising hematite, magnetite, chlorite, chert, and carbonate
‘floating’ in a matrix of carbonate cement. Field of view is 6 mm in (d) and 2.5 mm in (e). (c–e) �1.88 Ga Frere Formation, Earaheedy Group, Western
Australia.
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basins (Krapež et al., 2003), the two styles are linked and are in

agreement with a classic sequence-stratigraphic profile, defined

by GIF on the shelf and BIFs on the deep-water basin floor. For

GIF of the Superior craton, the transition between pairs of slaty

and cherty lithofacies is a unit of convolute IF (Figure 6(a)).

Sequence-stratigraphic models for Phanerozoic (and some

Mesoproterozoic) GIFs (ironstones) are slightly different be-

cause they comprise thin and locally discontinuous lithofacies

within siliciclastic depositional sequences. Maynard and Van

Houten (1992) suggested that oolitic ironstones were deposited

after the peak of regression and prior to the peak of transgression

(Figure 6(b)). The ironstones are capped by a hardground,

which in the Mesoproterozoic oolitic IFs of northern Australia,

is recognized by ooids, granules, and intraclasts floating in an

early diagenetic chert matrix/cement (Harms, 1965). Cherty

hardground records the peak of siliciclastic sediment starvation

on the shelf, thereby representing a maximum flooding surface

(Figure 6(b); cf. Fürsich et al., 1992; Pope and Read, 1997).

Oolitic IF within siliciclastic depositional sequences therefore

formed during transgression rather than still-stand. Not only
would peak flooding be the time of high organic productivity

and anoxia on the shelf, but it likely would also be the period of

maximum ingress of basinal waters, again suggesting that a

basinal supply of Fe(II) was a key aspect of IF.
9.18.4.1 Basin-Type Control on IF Deposition

After the rise of atmospheric oxygen during the GOE, isolated

to semi-isolated basins favored the development of conditions

necessary for Fe(II) transport. Restriction commonly results in

less vigorous circulation and limits exchange between oxygen-

ated surface waters and bottom waters. Additionally, a smaller

flux of reductants was required to induce anoxia. Under these

conditions during the Phanerozoic, small IFs and exhalites

formed in arc-related basins in association with volcanic suc-

cessions. Some Phanerozoic ironstones also likely formed in

redox-stratified epicontinental seas. Before the GOE, ocean

redox state was not a limiting factor for the deposition of IFs.

However, large hydrothermal fluxes were required to deliver

iron from the site where it was released from volcanics to the
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depositional site on continental margins and oceanic plateaus,

where it could survive subduction.

In addition to basin configuration and isolation, basin

tectonic setting also is a critical factor in the formation of

large IFs. A large Fe flux to the basin is needed to over-

whelm background siliciclastic sedimentation and result in

deposition of IF rather than Fe-enriched shale. Although

sedimentation rates of IFs were likely high (see below), IFs

are confined to depositional sites having low rates of terrige-

nous sediment delivery such as during rising and high sea level

(cf. Krapež et al., 2003). In this sense, IFs mark condensed

sections in the context of sediment delivered from the conti-

nents. Considering this sequence stratigraphic framework,

large IFs should not occur in intracratonic rift basins and

on passive continental margins where a high sediment flux

and a buffered redox state of the large seawater reservoir

after the GOE likely hindered their development. In addition,

late stages in foreland basin evolution are also not favorable

for the deposition of large IFs because high sediment fluxes

derived from the unroofing of fold-and-thrust belts likely

overwhelmed their accumulation. By contrast, early-stage fore-

land, back-, and fore-arc basins were better suited for IF depo-

sition: relatively gentle slopes, continuous subsidence, basin
isolation, and submarine volcanic activity would have all fa-

vored IF development. This framework not only allows the

screening of basins for their potential to have large IFs, but

also justifies the use of known IFs as markers of condensed

sections on a basin scale and for interbasinal correlation.
9.18.4.2 Sedimentation Rates

Knowledge of sedimentation rates of IFs is important for un-

derstanding their iron sources and mechanisms of deposition,

as well as depositional settings that are favorable for their

formation. There have been many geochronologic studies

(e.g., Altermann and Nelson, 1998; Arndt et al., 1991; Barley

et al., 1997; Barton et al., 1994; Pickard, 2002, 2003) that

discuss sedimentation rates of the precursor sediments to BIF.

Inferred compacted sedimentation rates range from as low as

2–6 m My�1 to as high as 30–33 m My�1. However, there has

been limited attention paid to extremely pulsed nature of IF

deposition. Krapež et al. (2003) showed that each sedimenta-

tion unit of Hamersley BIF is capped by a seafloor hardground

of chert, and that many of those hardgrounds were eroded

prior to deposition of subsequent sets. Therefore, it is difficult

to determine the significance of average depositional rates for

Figure&nbsp;6
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BIF when so much time within each sedimentation unit and

depositional sequence had been taken up by non-depositional

processes such as erosion and subseafloor silica replacement.

Clearly, depositional rates so calculated significantly underes-

timate true depositional rates. Although all sedimentary rocks

are characterized by pulsed deposition (Sadler, 1981), the

sedimentary architecture of IFs suggests that they have experi-

enced extreme (in frequency and duration) sedimentary hia-

tuses. Therefore, although previous estimates of depositional

rates for IFs are similar to those for typical deep-sea sediments,

there undoubtedly were pulses of rapid sedimentation similar

to, or likely even more extreme than, those characteristic of

near-axis, modern deep-sea sediments.

Based on the sequence analysis presented in Krapež et al.

(2003), and known geochronological constraints, each depo-

sitional sequence spans an average duration of about 1.5 My,

roughly equal to the duration of third-order eustatic cycles

possibly driven by pulses in spreading rates of mid-ocean

ridges. The thickness of each depositional sequence is not

constant, and neither is the proportion of diagenetic lithofa-

cies, further negating the meaning of IF sedimentation rates

based on the ratio of averaged thickness to averaged time

interval. It is therefore reasonable to infer that rates as high as

33 m My�1 for the maximum compacted sedimentation rate

are an underestimation, and that even higher sedimentation

rates should be considered in modeling IF deposition.
9.18.5 IF: A Proxy for Ancient Seawater Composition

9.18.5.1 Trace Elements

IFs, as chemical deposits, are among the most obvious lithol-

ogies to use to investigate the composition of ancient oceans.

Their precursor minerals precipitated directly from, or formed

by, interaction with seawater. Moreover, many IFs contain low

concentrations of crustally sourced elements such as Al, Ti, Zr,

Th, Nb, and Sc, which supports an authigenic origin. Hence,

secular changes in IF composition have long been used as

proxies for the chemical evolution of seawater over time (e.g.,

BauandDulski, 1996; Bolhar et al., 2002; Jacobsen andPimentel-

Klose, 1988), and, most recently, to evaluate the types of nutri-

ents that were available to ancientmarine life (e.g., Bjerrum and

Canfield, 2002; Konhauser et al., 2007a,b; Planavsky et al.,

2010a,b). Four examples of how hydrogenous trace elements

can track seawater composition are provided below.

9.18.5.1.1 Rare earth elements
Analysis of rare earth element (REE) patterns is a powerful tool

to understand conditions under which IFs were deposited (e.g.,

Alexander et al., 2008; Bau and Dulski, 1996; Bau and Möller,

1993; Derry and Jacobsen, 1990; Frei et al., 2008; Fryer, 1977;

Kato et al., 2006; Klein and Beukes, 1989; Planavsky et al.,

2010a,b). Given a constant ionic charge, all of the REE should

generally display similar behavior, with differences being

linked to ionic radius. The most notable exceptions are the

redox-related anomalies shown by Ce and Eu. Ce can be oxi-

dized from the trivalent to tetravalent state under similar

redox conditions to Mn(II) oxidation. In high-temperature

(>250 �C) hydrothermal systems, Eu can undergo reduction

from the trivalent to divalent state (Sverjensky, 1984), resulting
in positive anomalies in hydrothermal fluids relative to neigh-

boring lanthanide series elements (Sm and Gd). Fluid pH and

ligand (sulfate, chloride, and fluoride) concentrations have an

effect on REE patterns of hydrothermal fluids formed in back-

arc basins such as the Manus basin (Craddock et al., 2010).

Additionally, certain REE (foremost La and Gd) display anom-

alous bonding behavior linked to their f orbital configurations

in low-temperature aqueous systems. This anomalous behav-

ior, referred to as the lanthanide tetrad effect, can be explained

from a quantum mechanics perspective with refined, spin-

pairing energy theory (Kawabe et al., 1999). Anomalous

redox- and non-redox-controlled bonding behavior results in

deviations from the pattern expected based exclusively on charge

and radius-smoothed REE patterns when normalized to average

shale (Byrne and Sholkovitz, 1996). Lastly, there are differences

in burial fluxes of light versus heavy REE in aqueous systems. In

marine systems, carbonate complexation of REE results in the

light REE having a much higher sorption affinity. Therefore,

deviations in REE patterns can be used to track high-

temperature, hydrothermal, and low-temperature, aqueous geo-

chemical processes.

REE studies of IFs build on the assumption that there is

minimal fractionation of REE during adsorption onto ferric

iron oxyhydroxide precipitates; IFs are inferred to trap an REE

signature of seawater at the site of ferric iron precipitation. This

assumption is based on both experimental studies and results

from natural systems, and is likely valid for pH-buffered ma-

rine systems. For instance, Mn-poor hydrothermal plume par-

ticles essentially record a seawater REE pattern (e.g., Sherrell

et al., 1999). REE behavior in modern seawater is relatively well

understood and serves as a foundation for interpreting REE

patterns of IF.

There have been two main objectives in REE studies of IFs:

(1) tracing Fe sources, and (2) using the redox-dependent

properties of REE to decipher oxidation mechanisms responsi-

ble for iron deposition. Europium anomalies have been central

in the use of REE to trace Fe sources. Europium enrichment in

chemical sedimentary rocks that precipitated from seawater

indicates a strong influence of hydrothermal fluids on the

seawater-dissolved REE load (Derry and Jacobsen, 1988,

1990; Klinkhammer et al., 1983). The disparate behavior of

Eu from neighboring REE in hydrothermal fluids is linked to

Eu (III) reduction at high temperatures (>250 �C) and low Eh

conditions (Klinkhammer et al., 1983; Sverjensky, 1984). It is

generally assumed that Fe and REE will not fractionate during

transport from spreading ridges or other exhalative centers,

and therefore a large positive Eu anomaly indicates that Fe in

the protolith of IF is hydrothermally derived (e.g., Slack et al.,

2007). Nd isotope data further support a hydrothermal source

of Fe to Precambrian IFs (e.g., Bau and Dulski, 1996; Derry and

Jacobsen, 1990; Jacobsen and Pimentel-Klose, 1988).

Secular trends in the magnitude of Eu anomalies in large

sediment-hosted IFs have historically been assumed to indicate

variations in hydrothermal flux (e.g., Derry and Jacobsen,

1990), possibly linked to thermal history of the mantle. How-

ever, without independent constraints it is not possible to

exclude a link between a long-term decrease in the magnitude

of Eu anomalies to shifts in the continental delivery of REE,

potentially related to either crustal growth or crustal emergence

above seawater. Large positive Eu anomalies are a common
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feature in Phanerozoic and Proterozoic distal hydrothermal

sediments (e.g., Peter, 2003; Slack et al., 2007), but positive

Eu anomalies in post-Paleoproterozoic sediments are generally

assumed to indicate a local hydrothermal flux rather than

hydrothermally dominated seawater composition of the global

ocean. The lack of large Eu anomalies in IFs (e.g., �2.22 Ga

Hotazel Formation in South Africa; Tsikos and Moore, 1997)

or any of the Neoproterozoic IFs associated with the ‘snowball

Earth’ glaciations (e.g., Halverson et al., 2011; Klein and

Ladeira, 2004) may indicate that during deposition of these

IFs the oceans were not greatly influenced by a high-

temperature (>250 �C) hydrothermal flux.

REE studies have also focused on redox-controlled, water-

column REE behavior in modern anoxic basins. In general,

oxygenated marine settings display a strong negative Ce anom-

aly when normalized to shale composites (Ce(SN)), whereas

suboxic and anoxic waters lack large negative Ce(SN) anomalies

(e.g., Byrne and Sholkovitz, 1996; German and Elderfield,

1990). Oxidation of Ce(III) to Ce(IV) greatly reduces Ce solu-

bility, resulting in its preferential removal onto Mn–Fe oxyhydr-

oxides, organic matter, and clay particles (Byrne and Sholkovitz,

1996). In contrast, suboxic and anoxic waters lack large negative

Ce(SN) anomalies due to reductive dissolution of settlingMn–Fe-

rich particles (Byrne and Sholkovitz, 1996; German et al., 1991).

Similarly, light REE depletion and high Y/Ho ratios develop in

oxygenated waters due to preferential removal of light versus

heavy REE and of Ho relative to Y onto Mn–Fe oxyhydroxides

and other particle-reactive surfaces. As a result, the ratio of light

to heavy REEmarkedly increases across redox boundaries due to

reductive dissolution of Mn–Fe oxyhydroxides (Byrne and

Sholkovitz, 1996; German et al., 1991), whereas dissolved Y/

Ho ratios decrease across redox boundaries. In many modern

marine basins, the Ce(SN) anomaly and light to heavy REE ratio

return to values near that of the shale composite across the Mn

and Fe redox boundaries. In some basins, even positive Ce(SN)

anomalies and light REE enrichment develop within anoxic and

suboxic waters (e.g., Bau et al., 1997b; de Baar et al., 1988; De

Carlo and Green, 2002; Schijf et al., 1995). Redox-induced shifts

in REE patterns in some modern stratified basins have been

directly linked to Mn-cycling in the suboxic zone (De Carlo

and Green 2002; German et al., 1991).

In many Archean and early Paleoproterozoic IFs there

is no deviation from trivalent Ce behavior (e.g., Alexander

et al., 2008; Bau and Dulski, 1996; Bau and Möller, 1993;

Bau et al., 1997a; Frei et al., 2008; Fryer, 1977; Prakash and

Devapriyan, 1996), suggesting that the water column from

which ferric oxyhydroxides precipitated was reducing with re-

spect to Mn (cf. Bau and Dulski, 1996). In support of this

model, in a recent survey, 18 different Paleoproterozoic and

Archean IFs lack significant true Ce anomalies until after the

GOE (Planavsky et al., 2010a,b; Figure 7(a) and 7(b)). There

are several reported cases of Ce anomalies in Archean IFs (e.g.,

Kato et al., 2006). However, many – if not all – of these cases

can be linked to analytical artifacts or analysis of samples that

were affected by supergene alteration or weathering (Bekker

et al., 2010; Braun et al., 1990; Planavsky et al., 2010a,b;

Valeton et al., 1997).

There also appear to be differences in trivalent REE behavior

in IFs before and after the rise of atmospheric oxygen. Archean

and early Paleoproterozoic IFs are characterized by consistent
light REE depletion and high Y/Ho ratios (Planavsky et al.,

2010a,b). This pattern contrasts markedly with data for late

Paleoproterozoic IFs that show significant ranges in light to

heavy REE (Pr/Yb(SN)) and Y/Ho ratios both below and above

the shale composite value (Planavsky et al., 2010a,b; Figure

7(c)). This range of light to heavy REE and Y/Ho ratios (Figure

7(c) and 7(d)) in late Paleoproterozoic IFs likely reflects vari-

able fractionation of REEþY by Mn- and Fe-oxyhydroxide

precipitation and dissolution. Such an interpretation implies

deposition of late Paleoproterozoic IFs, at �1.88 Ga, in basins

having varying redox conditions and a strong redoxcline,

which separated the upper oxic water column from the

deeper-water, suboxic to anoxic waters (Planavsky et al.,

2009). A similar Mn redoxcline was likely absent in the Ar-

chean oceans. Significant Ce anomalies are lacking in carbon-

ates deposited in shallow-marine settings on Archean

carbonate platforms, which is consistent with this model

(Planavsky et al., 2010a,b).

Isotope ratios of some REE (e.g., Ce and Nd), in addition to

REE concentrations, have been used to constrain REE and Fe

sources to seawater and the time when REE systematics was

established (Amakawa et al., 1996; Derry and Jacobsen, 1990;

Hayashi et al., 2004; Shimizu et al., 1991; Tanaka and Masuda,

1982). Both Ce and Nd have short residence times in the

modern ocean, 90–165 and 1000–1500 years, respectively,

and heterogeneous isotope compositions (Amakawa et al.,

1996). The Archean oceans were also likely strongly heteroge-

neous having eNd(t) values of þ1 to þ2 typical of deep waters

dominated by hydrothermal Nd sources, and lower values

down to �3 typical of shallow waters dominated by terrestrial

Nd sources (Alexander et al., 2009). Similarly, eCe(t) values in
IFs show a strong hydrothermal impact on seawater composi-

tion in the Archean (Shimizu et al., 1990, 1991). Further, the

La–Ce geochronometry can be a valuable tool to constrain

whether negative or positive Ce anomalies reflect seawater

composition, diagenesis, or later metamorphic alteration, by

dating when REE systematics was established and comparing

this age with the independently known depositional age

(Hayashi et al., 2004).

9.18.5.1.2 Phosphorus
IFs have the potential to track dissolved phosphate concentra-

tions in ancient oceans (e.g., Bjerrum and Canfield, 2002). It is

well established, based on work in modern hydrothermal sys-

tems, that phosphate sorption onto iron oxides follows a dis-

tribution coefficient relationship; the amount of solid-phase P

in iron oxides scales with dissolved phosphate concentrations

(e.g., Edmonds and German, 2004; Feely et al., 1998). Impor-

tantly, however, this does not imply that P is simply adsorbed

onto ferric oxides. In fact, there is evidence that P is co-

precipitated with a Fe–Ca–P phase (Lilley et al., 1995). During

early diagenesis, sediment phosphorus concentrations de-

crease slightly, but most phosphorus will be retained during

Fe oxide recrystallization and secondary apatite precipitation

(e.g., Poulton and Canfield, 2006). The process will not signif-

icantly vary in different depositional settings, because it is

controlled largely by the surface chemistry of iron oxides.

This simple framework opens a pathway for estimating the

levels of this key nutrient in the ocean through Earth history

(Bjerrum and Canfield, 2002).
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A complicating factor of this seemingly simple approach is

that distribution coefficients can vary with different solution

chemistry, potentially leading to dramatically different P/Fe

ratios in IFs. Fortunately, phosphate outcompetes most anions

for sorption sites on iron oxides. However, dissolved Si, at high

concentrations, will outcompete phosphate for such sites

(e.g., Konhauser et al., 2007a,b). Additionally, metal-silica

coprecipitation should diminish the resulting particle’s point

of zero net charge, rendering it less reactive to dissolved anions

(e.g., Konhauser et al., 2007a,b). Therefore, higher dissolved Si

levels should yield lower P/Fe ratios in iron oxides, at constant

phosphate concentrations. This process is significant because

the marine Si cycle and dissolved Si concentrations have chan-

ged dramatically through time with the proliferation of enzy-

matic Si precipitation, foremost with the radiation and

evolution of diatoms in the Cretaceous (Maliva et al., 2008;

Siever, 1992). More generally, dissolved Si concentrations in

seawater have decreased through the Phanerozoic as the Si
cycle became increasingly biologically controlled. A decrease

in dissolved Si concentrations through time is likely to have

affected the abundance of a wide range of elements in iron

oxide-rich rocks, not just P concentrations.

Interestingly, at low levels, variations in Si concentration

appear to have little effect on anion sorption to iron oxides. In

the North Atlantic, bottom-water Si is about 40 mM whereas in

the Pacific the concentrations are much higher, �170 mM (e.g.,

WOCE, 2002). One might expect the slope between dissolved

P concentrations and P/Fe ratios to be different between the

Atlantic and the Pacific oceans; in the Pacific, the particles

should adsorbmuch less P. However, the trends in both oceans

are similar (Edmonds and German, 2004; Feely et al., 1998). In

the modern ocean, Si has no obvious influence on P/Fe ratios

for the concentration range of 40–170 mM Si. This is not

surprising, since at these relatively low Si concentrations, neg-

ligible Si becomes incorporated into ferric-oxyhydroxide

plume particles. Importantly, the range of variation in modern

Figure&nbsp;7
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dissolved Si concentrations is small compared to changes in

seawater Si concentrations envisaged during biomineralization

evolutionary events in the late Precambrian and Phanerozoic

(100s–1000s of micromolar Si shifts; Maliva et al., 2005; Sie-

ver, 1992). However, this potential discrepancy warrants addi-

tional experimental work on phosphate sorption onto iron

oxides at lower silica concentrations. It is possible that a thresh-

old value exists at which the inhibitory effect becomes

pronounced.

Additionally, iron-rich particles in modern, neutrally buoy-

ant plumes and rising plumes contain P-rich organic matter

and Fe as sulfides (Edmonds and German, 2004; Feely et al.,

1998). The P/Fe ratios of hydrothermal plume particles are

likely to be affected by these organic P and Fe(II) phases

(even though the Fe(II) phases are oxidized to Fe(III) phases

relatively rapidly). However, these effects are small enough that

a single global phosphorus–Fe-oxide Kd value can be delin-

eated from modern hydrothermal particles (Feely et al., 1998).

In summary, P/Fe ratios in modern hydrothermal plume par-

ticles are primarily controlled by the phosphate concentration

in coeval seawater.
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When viewed in light of the evolution of the Si cycle, P/Fe

ratios in IFs offer a perspective on dissolved P concentrations

in the oceans through time (e.g., Planavsky et al., 2010a,b; Fig-

ure 8). It appears that a relatively narrow range of variation

existed in dissolved phosphate concentrations throughout the

Phanerozoic, consistent with models of global biogeochemical

cycles (e.g., Arvidson et al., 2006). In contrast, during the Pre-

cambrian, phosphate concentrations may have been signifi-

cantly elevated relative to those of modern oceans. Foremost,

Neoproterozoic IFs have very high P/Fe ratios, despite the high

dissolved Si concentrations at that time, which would have

inhibited phosphate sorption onto iron oxides. Similarly, in

Archean and Paleoproterozoic IFs, P/Fe ratios are suggestive of

elevated marine phosphate concentrations. This hypothesis is a

deviation from the prevailing view of the early Precambrian

phosphorus cycle (Bjerrum and Canfield, 2002). A large amount

of phosphorus is currently removed from seawater during

the oxic alteration of seafloor basalts by absorption of P onto

basalt-derived iron oxyhydroxide particles (see Chapter 10.13).

In largely anoxic early Precambrian oceans, however, this phos-

phorus flux would have been shut off, which likely partly
ge (Ga)

 Earth glacial events

0.67 mM [Si]

2.2 mM [Si]

5 2.0 2.5 3.0
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ermal sediments and iron formations with low amounts of siliciclastic
f the marine phosphate reservoir; phosphate sorption onto ferric
fluenced by the concentration of dissolved silica, because phosphate and
sphate concentrations were extrapolated from average P/Fe ratios for
cristobalite saturation) and 2.2 mM (amorphous silica saturation). The
te concentrations in the Precambrian and a peak in phosphate level
ambrian increase in dissolved phosphorus concentration may have
in atmospheric oxygen levels – paving the way for the metazoan
0). The evolution of the marine phosphate reservoir. Nature
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explains elevated Precambrian phosphate concentrations in sea-

water. If this interpretation is quantitatively important, it pro-

vides an underappreciated feedback that may help constrain

ocean productivity and, indirectly, surface oxidation from overly

high levels. TheNeoproterozoic IFs are closely tied temporally to

snowball Earth glaciations, suggesting that glaciations or degla-

ciations could have played a complementary role to the high

P levels inferred for Neoproterozoic seawater (cf. Hoffman and

Schrag, 2002; Planavsky et al., 2010a,b).
9.18.5.1.3 Nickel
Nickel concentrations similar to those of phosphate follow a

distribution coefficient relationship during precipitation of

ferric oxyhydroxides. Therefore, the amount of Ni in oxide-

facies IFs with limited contribution of detrital materials can

be used to track first-order trends in dissolved Ni concentra-

tions in seawater (Konhauser et al., 2009). Ni is also of special

interest because it is a bioessential nutrient that in the modern

ocean follows a nutrient-type profile. The nickel content

(expressed as molar Ni/Fe) in IFs has changed dramatically

over time, beginning with a drop in Ni availability in the oceans

at �2.7 Ga (Konhauser et al., 2009; Figure 9). Iron-normalized

Ni concentrations in �3.8–2.7 Ga IFs are greater than

0.0004 M, were about half that value between 2.7 and 2.5 Ga,

and subsequently slowly approached modern values (<0.0001)

by 0.55 Ga. This drop in seawater Ni availability would have

had profound consequences for microorganisms that depended

on it, particularly methane-producing bacteria – methanogens

(Konhauser et al., 2009). These bacteria have a unique Ni re-

quirement for their methane-producing enzymes, and a defi-

ciency in this metal could have decreased their population.

Crucially, these bacteria have been implicated in controlling

oxygen levels on ancient Earth because the methane they
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Figure 9 Ni/Fe mole ratios for iron formations versus age. Ni/Fe ratios are
marine Ni concentrations after �2.7 Ga. The figure contains 1214 measurem
laser ablation analyses (crosses). Modified from Konhauser KO, Pecoits E, Lal
before the Great Oxidation Event. Nature 458: 750–753.
produced was reactive with oxygen and kept atmospheric oxy-

gen levels low (Zahnle et al., 2006). Methanogenic bacteria

preferentially take up light Ni isotopes, driving residual Ni in

seawater to positive Ni isotope values. This isotopic shift has

been interpreted as a unique biological fractionation mecha-

nism specific to methanotrophs (Cameron et al., 2009). How-

ever, recent studies by Gueguen et al. (in press) show that

nonbiological and even high-temperature magmatic processes

equally fractionate Ni isotopes, thus challenging the original

interpretation of large biological fractionations in Ni isotopes.
9.18.5.1.4 Chromium
The enrichment of the redox-sensitive trace metal Cr can be

used to track the terrestrial Cr flux to the oceans (Frei et al.,

2009; Konhauser et al., 2011). Data for nearshore IFs cannot

be used to infer bulk seawater composition, but they do offer

insights into the supply and composition of continental drain-

age waters, and, by extension, the physical and chemical

weathering processes on land at the time of their deposition.

In a recent compilation of Cr concentrations in IFs (Figure

10(a) and 10(b)), Konhauser et al. (2011) argued that Cr

was largely immobile on land until �2.5 Ga. After that time,

Cr enrichments started to increase in shallow-water IFs and

peaked essentially synchronous with the permanent loss at

�2.32 Ga of mass-independent fractionation of sulfur isotopes

that defines the GOE (Bekker et al., 2004; Guo et al., 2009).

This indicates that Cr was solubilized at a scale unrivaled in

Earth history, yet muted Cr isotope fractionations at that time

(Frei et al., 2009; see Figure 10(c)) argue against extensive

oxidative Cr(VI) transport during the GOE. Instead, Cr must

have been mobilized predominantly in reduced Cr(III) form

and supplied to the oceans in solution, or adsorbed onto

authigenic weathering products. Crucially, it is likely that
ge (Ga)
0.00.51.01.52.0

proposed to track marine Ni reservoir, suggesting a significant decline in
ents, including literature data (circles), bulk (squares) and grain-by-grain
onde SV, et al. (2009) Oceanic nickel depletion and a methanogen famine
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only microbially catalyzed oxidation of crustal pyrite could

have generated the degree of acidity required for appreciable

Cr(III) solubilization (Rai et al., 1989). Today, aerobically

respiring bacteria are essential to this process, catalyzing the

continued oxidation of Fe(II) as pH values drop below the

threshold for inorganic Fe(II) oxidation. Based on these con-

straints, it was suggested that the Cr(III) pulse beginning at
�2.48 Ga and peaking at �2.32 Ga indicates that such bacte-

ria began utilizing O2 for the first time to oxidize a previously

stable and abundant crustal pyrite reservoir (Konhauser et al.,

2011). Sulfuric acid generated by this metabolism ultimately

leached Cr from ultramafic source rocks and residual soils. This

profound shift in weathering regimes constitutes Earth’s first

acid continental drainage system (cf. Bekker and Holland,

Figure&nbsp;10
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2012), and accounts for independent evidence of increased

supply of sulfate (Bekker et al., 2004) and sulfide-hosted

trace elements to the oceans at that time (Scott et al., 2008).
9.18.5.2 Stable Isotope Studies of IF

Light stable isotopes of oxygen and carbon and, to a lesser

extent, hydrogen, sulfur, and nitrogen have been used widely

to understand the genesis of IFs, fundamental constraints on

Precambrian paleoenvironments, and the evolution of life

(e.g., Baur et al., 1985; Beaumont and Roberts, 1999; Becker

and Clayton, 1972; Goodwin et al., 1976; Hren et al., 2009;

Shen et al., 2006; Thode and Goodwin, 1983; Walker, 1984).

Following analytical advances in stable isotope geochemistry,

new isotope tracers are now available, including for the two

major elements in IFs, iron and silicon, as well as for trace

elements such as chromium, nickel, molybdenum, germa-

nium, and uranium. Although still in its infancy, the growing

field of non-traditional stable isotope geochemistry will cer-

tainly open new avenues for investigations of IFs.

9.18.5.2.1 Traditional light stable isotopes
Carbon isotopes have long been used as a tool to understand

the genesis of IFs. Most carbon isotope studies have focused on

the carbonate fraction, due in part to the generally low organic

carbon content in IFs. The most extensive studies have been

undertaken on the low metamorphic grade deposits of the late

Neoarchean to early Paleoproterozoic Transvaal Supergroup in

South Africa (e.g., Beukes and Klein, 1990; Fischer et al., 2009)

and the �2.5 Ga Brockman IF in Western Australia (e.g., Baur

et al., 1985; Becker and Clayton, 1972; Kaufman et al., 1990),

as well as the �1.88 Ga Biwabik and Gunflint IFs in the United

States and Canada (Perry et al., 1973; Winter and Knauth,

1992). Numerous siderite-rich IFs also have been analyzed

for carbonate carbon isotopes (e.g., Ohmoto et al., 2004).

Based on a recent compilation by Johnson et al. (2008a),

carbonates associated with IFs tend to be isotopically light,

with d13C values ranging from�20.0 toþ2.4% against Vienna

Pee Dee Belemnite (V-PDB) and the majority of values clus-

tered around �8 to �6% (Heimann et al., 2010). Organic

carbon isotope values also are 13C-depleted, with values as

low as �41.4%. Studies of carbonates from the Brockman IF

(Baur et al., 1985) show that isotopically light carbon and

oxygen isotope values correlate with concentrations of iron.

The negative carbonate carbon isotope values have been inter-

preted as evidence for direct carbonate (siderite) precipitation

from an iron-rich water column, stratified with respect to

carbon isotope composition of total dissolved inorganic car-

bon and influenced by a deep-water, hydrothermal flux asso-

ciated with submarine magmatic activity (e.g., Beukes and

Klein, 1990; Winter and Knauth, 1992). Although a stratifica-

tion of several per mil in the carbon isotope composition of

dissolved inorganic carbon is present in the modern ocean

(e.g., Kroopnick, 1985), a much smaller gradient is preserved

in the early Precambrian rock record and is expected under the

high pCO2 conditions required to compensate for a lower solar

luminosity during early Earth history (Hotinski et al., 2004). As

another caveat on those interpretations, petrographic evidence

(e.g., Ayres, 1972) indicates that almost all iron-rich carbonates

in IFs formed during burial diagenesis and, therefore, are
unlikely to have precipitated within the water column (see,

e.g., how iron-rich carbonate in Figures 2(e), 2(g), and 3(e)

occludes laminae). Consistent with these petrographic observa-

tions, some Fe-rich carbonates, in particular those in oxide and

silicate facies IFs, tend to have more negative oxygen isotope

values than coeval calcite and dolomite that precipitated from

seawater (Heimann et al., 2010), suggesting that the Fe-rich

carbonates formed during late diagenesis in sediments, possibly

at several kilometers depth. Formation of 13C-depleted Fe-rich

carbonates also is commonly linked with a fermentative metab-

olism and anaerobic respiration in the anoxic water column and

sediments. This interpretation was first suggested by Perry et al.

(1973) and, later, by Walker (1984), who proposed that the

markedly light carbon isotope values of siderite in IF reflect

diagenetic precipitation of ferruginous carbonate linked to or-

ganic matter remineralization, with ferric oxides being the ter-

minal electron acceptor. Heimann et al. (2010) placed isotopic

and mass balance constraints on this model. The case of dissim-

ilatory iron reduction (DIR) and complete C and Fe retention in

sediments is described by the following equation, in which

CH2O represents the total organic carbon:

4FeðOHÞ3 þ CH2O þ 3HCO3
�

! 4FeCO3 þ 3OH� þ 7H2O

This equation implies that three out of four carbon atoms in

siderite were derived from seawater bicarbonate present in

pore waters and the water column. At a lower contribution

from seawater bicarbonate (e.g., at a greater depth in sediments

and at a more pronounced isolation from the water column),

some Fe would be lost from sediments to pore waters during

DIR. A higher contribution of seawater bicarbonate would

correspond to the case where the upward-diffusing iron in

pore waters is bound at a higher level in sediments or at the

water–sediment interface with seawater bicarbonate. Using

average carbon isotope values for bicarbonate and organic

carbon (0 and �30%, respectively), the above equation re-

quires the average carbon isotope value of siderite to be close

to �7.5%, if all iron reduced by DIR was retained in the

sediments. Interestingly, as noted above, the carbon isotope

values of siderite in IFs cluster close to this value, although

some bias toward less-negative values is likely due to oversam-

pling of massive beds formed at or just below the sediment–

water interface. In this rather simplistic view of early

diagenesis, IF carbon isotope data suggest that a significant

amount, if not all, of the iron released by DIR was retained in

the sediments and did not escape back into the water column.

Another plausible model links the light carbon isotope

ratios in iron carbonates of IFs to iron-based methane oxida-

tion. Recently, this process has been documented at modern

marine methane seeps (Beal et al., 2009) and in an iron-rich

lake (Crowe et al., 2011). These findings build from thermo-

dynamic predictions, which suggest that bacteria are capable of

linking methane oxidation to ferric iron reduction. Methano-

genesis was likely a common metabolic pathway in organic

matter-rich shales within iron formation-bearing sequences,

and possibly in precursor sediments for Archean and Paleo-

proterozoic IFs (e.g., Konhauser et al., 2005). In this scenario,

methane produced in sediments during early diagenesis dif-

fused upwards and was biologically oxidized with ferric oxides,
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producing both ferrous iron and bicarbonate that would then

coprecipitate as iron-rich carbonate. The presence of markedly

negative carbonate carbon isotope values as low as �20% is

consistent with methane cycling having mediated carbonate

precipitation, given that methane is much more isotopically

depleted in 13C than is typical organic matter. This process

could also create organic matter having extremely depleted

d13C values without aerobic involvement.

The oxygen isotope composition of chert in IFs, particularly

coupled to other isotope proxies such as Si, H, and Fe, has been

used to address issues such as Precambrian ocean temperatures

(Hren et al., 2009; Knauth, 2005; Knauth and Lowe, 2003;

Robert and Chaussidon, 2006) and seawater oxygen isotope

compositions (Perry, 1967), the source of silica to IFs (Robert

and Chaussidon, 2006; Steinhoefel et al., 2009; van den Boorn

et al., 2007), and the degree of metamorphic overprint (Valaas

Hyslop et al., 2008). Assuming that oxygen isotope values of

Precambrian oceans were similar to those of ice-free recent

oceans (Knauth and Lowe, 2003; Muehlenbachs, 1998) and

that postdepositional isotope exchange was minimal, the bulk

oxygen isotope composition of chert might be a useful

paleothermometer because isotope fractionation between sil-

ica and seawater is dependent on temperature. Under this

assumption, low oxygen isotope values of <þ22% Standard

Mean Ocean Water (SMOW) for 3.4–3.2 Ga cherts were inter-

preted as evidence for hot early oceans, implying seawater

temperatures of 55–85 �C (Knauth and Lowe, 2003). This was

later supported by the in situ ion microprobe study of cherts by

Robert and Chaussidon (2006), revealing covariation between

the silica and oxygen isotope records. Subsequent studies apply-

ing similar techniques and the modeling of diagenesis and

metamorphism established that some of the �3.5–3.3 Ga

Onverwacht Group cherts in South Africa were completely

equilibrated with postdepositional gold-bearing fluids and,

therefore, had lost their original seawater signal (Marin-

Carbonne et al., 2011). Other studies have shown that chert in

the 1.88 Ga Gunflint Formation of Canada precipitated at much

lower (37–52 �C) temperatures (Marin-Carbonne et al., 2012).

Similarly, a study of isotope compositions of the�3.42 Ga Buck

Reef Chert in South Africa (Hren et al., 2009) questioned previ-

ously inferred temperature constraints of Knauth and Lowe

(2003). Hren et al. (2009) explored the temperature depen-

dence of oxygen and hydrogen isotope fractionations in order

to calculate d18O values of ambient fluids during transformation

of amorphous silica to microcrystalline quartz, finding that the

Paleoarchean ocean was isotopically depleted in 18O relative

to the modern ocean and thus was far cooler (<40 �C) than

previously envisaged. In using these and similar arguments,

the assumption has generally been made that chert represents

a marine chemical precipitate, and that its isotopic composition

directly reflects the composition and temperature of the

Archean ocean at the time of deposition. This is, however,

unlikely for Paleoarchean cherts within volcano-sedimentary

sequences of greenstone belts, because their origin is closely

linked to syndepositional, low-temperature hydrothermal pro-

cesses on the seafloor (Hofmann and Bolhar, 2007; Hofmann

and Harris, 2008). Temperature estimates obtained from stable

isotope paleothermometry, therefore, reflect the temperature

of chert precipitation as a result of mixing of hydrothermal

fluids with cold seawater. The diagenetic origin of bedded cherts
in BIF of the Hamersley Group (Krapež et al., 2003) also chal-

lenges the meaning of these isotope data.

Sulfur isotope compositions of organic matter-rich and sul-

fidic shales interbedded with Neoarchean and Paleoproterozoic

IFs have been extensively studied to constrain biological

sulfur cycling, sources of sulfur, and ocean redox structure (e.g.,

Cameron, 1983; Goodwin et al., 1976; Grassineau et al., 2001;

Thode and Goodwin, 1983). On the other hand, super-heavy S

isotope values in Neoproterozoic postglacial lithologies, includ-

ing Fe andMn formations, were linked to Rayleigh fractionation

during pyrite formation under low seawater sulfate conditions

(Liu et al., 2006). The results were used by Habicht et al. (2002)

to infer a low (<200 mM) seawater sulfate content in the Archean

ocean. An increase in the range of sulfur isotope values

in �2.7 Ga black shales interbedded with IFs has been inter-

preted as an expression of dissimilatory bacterial sulfate reduc-

tionor redox cycling in stratifiedArcheanoceans (Goodwin et al.,

1976;Grassineau et al., 2001). Studies ofmultiple sulfur isotopes

have shown that the range of d34S values alone in sediments

deposited before the GOE cannot be used to support either of

these two interpretations, because photochemical processes in an

anoxic atmosphere significantly fractionate sulfur isotopes

(Farquhar et al., 2000). Indeed, the same 2.7 Ga sedimentary

units contain a large range of mass-independent fractionation

in sulfur isotopes, thus arguing for the role of photochemical

processes and against oxygenated surface environments. Al-

though biological sulfur cycling was likely present in Archean

oceans (e.g., Philippot et al., 2007; Shen et al., 2001, 2009), it is

difficult to constrain its role using sulfur isotopes alone. Multiple

sulfur isotope analyses of sulfur hosted in IFs also show a

large range of mass-independent fractionations (Farquhar and

Wing, 2005; Kaufman et al., 2007; Partridge et al., 2008),

suggesting that small amounts of sulfur compounds derived

fromphotochemically fractionated sulfur species co-precipitated

with IFs.

Very little data are available for nitrogen isotope composi-

tion of IFs, mainly due to their low nitrogen contents. How-

ever, ammonium might substitute for potassium ion in the

primary clay minerals (cf. Williams and Ferrell, 1991) within

IFs, such as in the sedimentary precursor to stilpnomelane,

making IFs at low metamorphic grade a prospective lithology

for nitrogen isotope studies. From the N isotope data presently

available for organic matter-rich shales, cherts, and IFs it ap-

pears as though a bimodal secular pattern exists with a change

occurring across the Neoarchean–Paleoproterozoic boundary,

interpreted as reflecting progressive oxidation of surface envi-

ronments (Beaumont and Robert, 1999; Garvin et al., 2009;

Godfrey and Falkowski, 2009; Shen et al., 2006; Thomazo

et al., 2011). The older record is marked by a large range of

negative and highly positive values, which are generally related

to bacterial nitrogen fixation as a principal pathway for bio-

geochemical nitrogen cycling in anoxic oceans, where nitrifi-

cation with oxygen as an electron acceptor was limited or

absent (Farquhar et al., 2011). A shift to predominantly posi-

tive nitrogen isotope values in Neoarchean shales is related to

an emergence of nitrification and denitrification (a process

that requires dissolved nitrate), coeval with the appearance

of dissolved oxygen in at least the upper part of the ocean

water column (Garvin et al., 2009; Godfrey and Falkowski,

2009; Thomazo et al., 2011). Interestingly, 2.7 and 2.5 Ga
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IFs, black shales, and cherts also contain nitrogen with highly

positive isotope values (Beaumont and Robert, 1999; Jia and

Kerrich, 2004; Shen et al., 2006). Considering that these lithol-

ogies were deposited in relatively deep-water (below storm

wave-base) anoxic environments, it is highly unlikely that

any nitrite or nitrate was exported into these environments

from local oxygenated settings, where they could have gained

positive nitrogen isotope values due to Rayleigh distillation

associated with denitrification. On the other hand, it seems

plausible that oxidized nitrogen species could have been pro-

duced during early diagenesis when organic matter and am-

monium were biologically remineralized, with ferric iron

acting as electron acceptors in the absence of oxygen. Such a

process could lead to the formation of isotopically distinct

nitrogen pools. There is tentative evidence for microbial am-

monium oxidation to nitrite coupled to Fe(III) reduction in

laboratory experiments (Sawayama, 2006) and under anaero-

bic conditions in wetland soils (Clement et al., 2005). Al-

though further documentation of this process is needed, it is

a thermodynamically feasible metabolic pathway, and it is

likely common in modern Fe-rich systems.

9.18.5.2.2 Nontraditional stable isotopes
9.18.5.2.2.1 Fe isotopes

A number of recent iron isotope studies of IFs have been made

with the aim of tracking the biogeochemical cycling of iron

on early Earth (Beard et al., 1999; Craddock and Dauphas,

2011; Dauphas et al., 2004; Heimann et al., 2010; Johnson

et al., 2003, 2008a,b; Planavsky et al., 2009; Rouxel et al.,

2005; Steinhoefel et al., 2009). Importantly, this recent iron

isotope work has bolstered evidence for a rain of ferric oxy-

hydroxides during IF deposition, for early diagenetic
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microbial iron cycling, and for a hydrothermal iron source

for IFs (e.g., Anbar and Rouxel, 2007; Dauphas and Rouxel,

2006; Heimann et al., 2010; Planavsky et al., 2012). Iron

isotopes are typically reported as d56Fe values with a range

of 5% in nature. Several recent reviews provide detailed in-

formation on iron isotope systematics and fractionations

(Anbar and Rouxel, 2007; Beard et al., 2003; Dauphas and

Rouxel, 2006; Johnson et al., 2008b). The application of iron

isotopes to understanding the ancient iron cycle is based on a

foundation of extensive experimental work that determined

kinetic and equilibrium fractionation factors during redox

reactions and mineral precipitation (Beard et al., 1999,

2010; Bullen et al., 2001; Butler et al., 2005; Croal et al.,

2004; Crosby et al., 2005; Guilbaud et al., 2011; Welch

et al., 2003; Wiesli et al., 2004). In general, the largest iron

isotope fractionations occur during redox reactions. For in-

stance, during Fe(III) reduction and Fe(II) oxidation there is

�1.5% fractionation. The notable exception is during sulfide

formation, which might be accompanied by a large (>2%)

fractionation (Guilbaud et al., 2011; Rouxel et al., 2008a,b);

since IFs typically lack sulfides, this pathway for isotopic

fractionation is not particularly relevant. Additionally, a

sound understanding exists of the isotopic composition of

iron from different sources (Dauphas and Rouxel, 2006;

Johnson et al., 2008a). Most importantly, iron derived from

hydrothermal sources has slightly negative or near-zero iron

isotope values (e.g., Rouxel et al., 2008a,b), whereas a benthic

flux (dissolved iron derived from iron reduction during early

sediment diagenesis on continental shelves and supplied to

deep euxinic part of the basin) is likely to have a pronounced

negative iron isotope value (e.g., Severmann et al., 2008).

This isotopically light benthic Fe source has also been found
e (Ga)
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to be transferred to the water column, notably in coastal

settings (Rouxel and Auro, 2010).

Bulk samples of IFs commonly contain positive or near-

crustal d56Fe values (Craddock and Dauphas, 2011; Johnson

et al., 2003, 2008a; Planavsky et al., 2012; Rouxel et al., 2005;

Steinhoefel et al., 2009; Figure 11), which provide insight into

iron-enrichment mechanisms. The two most commonly pro-

posed iron sources for IFs, hydrothermal (Bau et al., 1997a,b;

Bekker et al., 2010) and benthic (Raiswell, 2006; Severmann

et al., 2008), have negative (subcrustal) d56Fe values. Hence, the

presence of positive d56Fe values in IF must reflect a fraction-

ation during mineral precipitation. More specifically, positive

d56Fe values point toward a rain of ferric oxyhydroxides to the

sediment–water interface (e.g., Dauphas et al., 2004). Ferric

oxyhydroxides are fractionated by �1.5% relative to dissolved

ferrous iron (see Johnson et al., 2008b for review). This enrich-

ment in heavy Fe isotopes contrasts with the isotope fraction-

ations associated with siderite, ankerite, and green rust

precipitation, which are heavy iron isotope-depleted relative to

the ambient Fe(II)aq pool (Wiesli et al., 2004); the exact frac-

tionation during precipitation of iron silicates is unknown. In

general, positive iron isotope values in IFs indicate that Fe(III)

delivery was the main process driving iron enrichments. Addi-

tionally, the expression of large Fe isotope fractionations implies

partial Fe(II) oxidation, pointing toward oxidation at low Eh

conditions (Planavsky et al., 2012). If Fe(II) oxidation took

place during mixing of anoxic Fe(II)-rich and oxygenated ma-

rine waters, as was commonly envisaged in the past (Cloud,

1973; Holland, 1984), oxidation would have been essentially

quantitative given the rapid oxidation kinetics of iron at neutral

to alkaline pH (e.g., Stumm and Morgan, 1995). This rapid and

quantitative oxidation would have prevented any significant

expression of iron isotope fractionations, which is the case

with modern hydrothermal plume fallout (Severmann et al.,

2004). Therefore, the presence of large iron isotope fraction-

ations argues against oxidation having been quantitative.

The presence of positive d56Fe values in IFs dominated by

reduced or mixed-valence iron minerals may also provide

strong evidence for microbial Fe(III) reduction in precursor

sediments to the IFs (Craddock and Dauphas, 2011; Johnson

et al., 2008a,b). For example, siderite with positive d56Fe values
and siderite with similar d56Fe values as coexisting iron oxides

(Craddock and Dauphas, 2011) indicate a lack of isotopic

equilibrium between siderite and aqueous Fe(II) in ancient

anoxic oceans (Johnson et al., 2008a). Siderite that precipitated

from seawater should have a negative d56Fe value, given the

isotopic fractionation during siderite precipitation and expected

iron isotope values for seawater. Therefore, siderite with positive

d56Fe values must have been derived by reductive dissolution of

iron oxyhydroxides rather than having precipitated directly from

seawater. In most cases, microbial Fe(III) reduction can be

assumed to be driving the reductive oxide dissolution. This

also implies quantitative reduction of iron oxide precursors,

which raises an important question regarding the nature of the

electron donors in organic matter-starved systems of IF. Al-

though iron isotope data for IFs may point towards microbial

Fe(III) reduction in the rock record, possibly dating back to the

earliest known sedimentary rocks at �3.8 Ga (Craddock and

Dauphas, 2011), independent evidence is needed to exclude the

possibility of siderite formation duringmetamorphic reaction of
iron oxides and organic carbon, before positive d56Fe values in
siderite can be linked with microbial Fe(III) reduction. As

stressed above, petrographic evidence for siderite precipitation

from seawater is generally lacking.

Positive d56Fe values in IFs are also consistent with a hy-

drothermal iron source. The common occurrence in bulk IF

samples of d56Fe values between 0.5 and 1.0% (e.g., Planavsky

et al., 2012) is consistent with partial oxidation of hydrother-

mal Fe(II), because hydrothermally sourced iron should have

an initial d56Fe value between �0.5 and 0%. These positive

d56Fe values are less likely to be linked to partial oxidation of

benthic and diagenetically derived iron, since the latter fluxes

are typically characterized by quite negative d56Fe values

(<�1.5%). Iron isotopes do not provide definitive evidence

for a hydrothermal iron source, but support this model, which

is also strengthened by many other lines of geological and

geochemical evidence (e.g., Bekker et al., 2010).

Iron having near-crustal or negative d56Fe values in IFs

could have been sourced from either a hydrothermal or a

benthic source. The degree of water-column Fe(II) oxidation

is expected to vary widely in Archean and Paleoproterozoic

oceans, potentially accounting for a range of iron isotope

values in the particulate iron oxyhydroxide flux for a given

dissolved iron isotope value. Additionally, it is likely that

when reducing marine conditions prevailed, as indicated for

the Archean and Paleoproterozoic oceans by REE studies (e.g.,

Bau and Dulski, 1996; Planavsky et al., 2010a,b), partial Fe(II)

oxidation could have resulted in a dissolved iron isotope gra-

dient. Precipitation of isotopically heavy iron oxides would

leave behind an isotopically light dissolved iron pool, which

also could have been transferred to the IF rock record with

additional oxidation (Rouxel et al., 2005). The co-occurrence

of isotopically light carbonate carbon and iron isotope values

has been proposed as evidence for the reductive origin of light

iron isotopes in IFs, possibly with iron being sourced from

within the sediment pile (Craddock and Dauphas, 2011;

Heimann et al., 2010; Johnson et al., 2008a). This model

builds from the earlier interpretations outlined above that

light carbonate carbon isotope values may be derived by remi-

neralization of organic matter (e.g., Baur et al., 1985; Becker

and Clayton, 1972; Kaufman et al., 1990). The light iron

isotope values similarly may record partial microbial reduction

of iron oxyhydroxides during early diagenesis (Johnson et al.,

2008a). However, negative carbonate iron isotope values can

result from direct precipitation of seawater-derived Fe(II),

whereas the light carbonate carbon isotope values are linked

to organic matter remineralization. Stated more simply, iron

isotopes can be controlled by the flux of iron to the sediment–

water interface, whereas carbon isotopes provide a signal of

early diagenetic microbial processes. IF carbonates having pos-

itive d56Fe values also show markedly negative carbonate car-

bon isotope values (Craddock and Dauphas, 2011), consistent

with the above-outlined model.

There has been extensive discussion on negative iron iso-

tope values in IFs. Several conflicting interpretations exist for

these values, such that independent geological and geochemi-

cal evidence should be used to discriminate these models

(Johnson et al., 2008a; Tsikos et al., 2010). Further, light iron

isotope values are not a silver bullet for DIR even if coupled

with light carbonate carbon isotope values.
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A compilation of bulk rock and mineral-specific d56Fe
values for Archean and Paleoproterozoic IFs (Figure 11)

shows an overall range between �2.5 and 2.7%, which en-

compasses most of the natural variations in iron isotopes

observed to date. Although these data reveal that many

Archean and early Paleoproterozoic IFs were a sink for isoto-

pically heavy iron, in contrast to later Proterozoic and Phaner-

ozoic iron oxide-rich rocks, further work is needed to explore

whether a secular change exists in the iron isotope composition

of IF prior to the GOE. Notably, markedly low d56Fe values are
common in the �2.22 Ga Hotazel Formation of South Africa

and especially in manganese-rich samples. This distinctive fea-

ture may reflect the deposition of iron and manganese from

hydrothermal fluid depleted in heavy iron isotopes, by pro-

gressive Fe(II) oxidation and precipitation in the deeper part of

a redox-stratified basin that had a redox state intermediate

between that required for iron and manganese oxidation

(Tsikos et al., 2010).

The average iron isotope composition of different types of

IF is a major unresolved question. In some cases, IFs have been

estimated to have a near-crustal average d56Fe value (Johnson

et al., 2008a). However, as discussed above, many IFs display

positive d56Fe values and thus have been interpreted as a

significant sink of isotopically heavy iron (Planavsky et al.,

2012; Rouxel et al., 2005). Unfortunately, previous iron iso-

tope studies were not ideally designed to estimate the average

iron isotope composition of IFs. In order to attain the most

accurate average estimate possible, thick sections of randomly

selected drill core intervals should be homogenized prior to

analysis. Although this method is tedious, if done for several

major Archean IFs it could help constrain iron isotope mass

balance during that era. More specifically, this work would

serve as a test for the model in which deposition of isotopically

heavy IFs in the deeper parts of basins created a pool of isoto-

pically light dissolved iron that was then buried in shallow-

water environments in the Archean (Rouxel et al., 2005).

9.18.5.2.2.2 Chromium isotopes

Frei et al. (2009)measured Cr isotope values for 23 IFs ranging in

age from 3.8 to 0.635 Ga (see Figure 10(c)). Their data revealed

a pronounced difference between Archean–Paleoproterozoic

and Neoproterozoic IFs. The former have Cr isotope values

within a small range of �0.26 to 0.28%, whereas the latter

reach values up toþ4.9%. Based on the small positive Cr isotope

excursions in IFs as old as 2.7 Ga, Frei et al. (2009) argued that Cr

(VI) was mobilized from land to the oceans, where it was then

quantitatively reduced to Cr(III) and incorporated into IF. The Cr

(III) oxidative step that generates the Cr(VI) requires a MnO2

catalyst, which importantly necessitates significant levels of at-

mospheric O2 asmuch as 300 My before the GOE (e.g., Holland,

2005). However, consideration of the depositional setting ques-

tions this conclusion. The Archean IFs that display statistically

significant positive d53Cr values were proximal to submarine

hydrothermal centers (Figure 10(c)) and analyses of some mod-

ern hydrothermal vent fluids suggest hydrothermal Cr flux, likely

as a reduced, organically bound Cr(III) phase (Sander and

Koschinsky, 2000). Some of the solubilized Cr(III) in hydrother-

mal fluids is expected to be removed in the subsurface or at the

sediment–water interface together with hydrothermal sulfides.

Although redox-independent processes typically result in
extremely small isotope fractionations, it is possible that kinetic

isotope effects in hydrothermal systems were amplified, similarly

to what has been observed for other transition metals (e.g.,

Rouxel et al., 2008a,b). The end result would be a dissolved Cr

pool with small positive d53Cr values that could be recorded in

some IFs proximal to volcanic centers. In this context, positive

d53Cr values from �2.7 Ga IFs (Frei et al., 2009) may provide

insights into hydrothermal processes in the Archean, but are

unlikely to reflect oxidative continental weathering. The currently

available IF Cr isotope results are intriguing, but given the un-

certainties about Cr cycling in Archean submarine hydrothermal

systems, these data are not a straightforward archive of atmo-

spheric processes.

Slightly positive Cr isotope values as reported in the upper

part of the �1.88 Ga Gunflint IF (Frei et al., 2009), are also

difficult to interpret in terms of terrestrial oxidative processes,

because this section of the IF experienced meteoric alteration

during the�30 My hiatus that followed deposition of this unit

(Burton and Fralick, 2007). Destruction of original sedimen-

tary features, intense silicification and carbonatization and

pronounced groundwater-derived vanadium enrichment

characterize the upper part of this alteration zone (Burton

and Fralick, 2007). Groundwater systems, similarly to hy-

drothermal systems, are likely to amplify small sorption

isotope effects. In fact, modeling of reactive Cr transport in

a groundwater plume suggests that there can be a tenfold

amplification of a Cr sorption isotope effect (Johnson and

Bullen, 2004). Chromium isotopes in sedimentary rocks

altered by groundwater systems are therefore equally un-

likely to provide insights into atmospheric processes. By

contrast, highly positive values in the Neoproterozoic IFs

(Frei et al., 2009) likely reflect redox cycling, since both the

partial reduction and the oxidation of Cr should create a

mobile Cr(VI) reservoir with positive Cr isotope values. It

would appear that the onset of a rigorous, terrestrial Mn-

oxide cycle occurred sometime between the Paleo- and Neo-

proterozoic, but the current data gap precludes precisely

defining the timing of this event.

9.18.5.2.2.3 Silicon isotopes in chert and IF bands

In order to better constrain silica sources, a growing number of

studies have investigated the Si isotope composition of

Precambrian IFs and cherts (Abraham et al., 2011; Andre

et al., 2006; Ding et al., 1996; Jiang et al., 1993; Robert and

Chaussidon, 2006; Steinhoefel et al., 2009, 2010; van den

Boorn et al., 2007, 2010). Silicon isotope ratios are resistant

to hydrothermal alteration and thermal effects, including high-

grade metamorphism (Andre et al., 2006), due to the high

abundance of Si in most rocks. Si isotope ratios are thus

regarded as recording primary signatures. However, biogenic

and abiogenic, low-temperature amorphous silica precipitates

are significantly enriched in light Si isotopes relative to dis-

solved Si source (e.g., Basile-Doelsch, 2006; Ding et al., 1996;

Douthitt, 1982), resulting in residual dissolved Si depleted in

light isotopes. Diatoms, which preferentially incorporate light

Si isotopes, dominate the modern marine silica cycle. As a

result, dissolved Si in modern seawater has positive d30Si
values (þ0.6 to þ2.2%, Figure 12; De La Rocha et al., 2000;

Reynolds et al., 2006). The same fractionation pattern arises

from chemical precipitation of silica near seafloor
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Figure 12 d30Si values of mafic to ultramafic volcanic rocks (Fitoussi
et al., 2009; Savage et al., 2010), seawater and mid-ocean ridge
hydrothermal fluids (De La Rocha et al., 2000), modern siliceous
precipitates of seafloor hydrothermal systems (Ding et al., 1996; Wu,
1991), Paleoarchean cherts from the Pilbara craton (van den Boorn et al.,
2007, 2010), the �3.8 Ga IF from the Isua greenstone belt (André et al.,
2006), the �2.7 Ga IF from the Shurugwi greenstone belt (Steinhoefel
et al., 2009) and North China craton (Ding et al., 1996; Jiang et al., 1993),
and the 2.5 Ga IF from the Hamersley Group and Transvaal Supergroup
(Steinhoefel et al., 2010).

584 Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry
hydrothermal vents. Whereas black smoker vent fluids have a

Si isotope composition in the same range as mafic/ultramafic

volcanic rocks (�0.4 to �0.2%; De La Rocha et al., 2000;

Fitoussi et al., 2009; Savage et al., 2010), hydrothermal sea-

floor precipitates typically have more negative d30Si values (as
low as�3.1%, Figure 12; Ding et al., 1996; Wu, 1991). Silicon

isotope fractionation factors between precipitates and fluids

are not well constrained, but are on the order of �1.5%
(Basile-Doelsch et al., 2005). Owing to the absence of silica-

secreting organisms during the Precambrian, Archean seawater

probably was close to or at saturation with respect to amor-

phous silica (Siever, 1992). The removal of silica by precipita-

tion and sorption processes probably gave rise to an Archean

ocean having positive d30Si values similar to those in the

modern ocean, although the values may have been higher

(Robert and Chaussidon, 2006; van den Boorn et al., 2010).

d30Si values of Precambrian IFs ranging in age from 3.8

to 2.5 Ga are consistently negative (Figure 12). The values

vary between �2.51 and �0.51% with an average of

�1.14�0.84% (n¼165, 2s). These negative values are consis-
tent with a hydrothermal source of the silica and are similar to

those of modern hydrothermal vent precipitates (�1.57%,

n¼26; Ding et al., 1996; Wu, 1991). The lowest average

Si isotope value reported is for the �3.8 Ga Isua IF in

Greenland (�1.78%, n¼16; Andre et al., 2006), suggesting a
predominantly hydrothermal source for Si. The highest values

are in �2.5 Ga IFs of the Hamersley Group, Western Australia,

and Transvaal Supergroup, South Africa (�1.02%, n¼125;

Steinhoefel et al., 2010), implying silica precipitation from a

heavier Si reservoir, probably due to mixing of hydrothermal

fluids with isotopically heavier seawater. The latter IFs also

show the smallest spread in d30Si values, suggesting a

well-mixed seawater Si reservoir. A larger spread in d30Si values
may reflect pulses of hydrothermal discharge and deposition

closer to the venting sites, as proposed for the�2.7 Ga IF in the

Shurugwi greenstone belt, Zimbabwe (Steinhoefel et al.,

2009). Paleoarchean cherts devoid of clastic detritus and repre-

senting predominantly hydrothermal precipitates show Si iso-

tope values that are heavier than those in IF (�0.41%, n¼24;

van den Boorn et al., 2007, 2010). The entire range of Si

isotope values has been explained by mixing of hydrothermal

fluids and seawater or by fractionation of hydrothermal fluids

at depth (van den Boorn et al., 2010). In addition, the total

range of Si isotope values in cherts and and IFs also may point

to different fractionation factors involved with different mech-

anisms of silica precipitation and different silica phases (e.g.,

amorphous silica, quartz, and jasper).
9.18.6 Perspective from the Modern Iron Cycle

The modern ocean has several iron sources: (1) river and

groundwater discharge, (2) continentally derived atmospheric

dust, (3) remobilization from coastal and shallow-water sedi-

ments, (4) sea ice, and (5) hydrothermal fluids (Boyd and

Ellwood, 2010). Oxidizing conditions in modern seawater

limit dissolved iron content in open oceans to �0.02–2 nM

(average 0.5 nM; Bruland and Lohan, 2006); the present resi-

dence time of iron in the oceans is 100–200 years (Johnson

et al., 1997), which is much shorter than the global ocean

circulation time of �1000 years (Boyd and Ellwood, 2010).

However, even these low levels of dissolved iron are much

higher than thermodynamically predicted Fe3þ solubility

(0.08–0.2 nM). This difference reflects complexation by iron-

binding ligands such as siderophores (Boyd and Ellwood,

2010). Indeed, more than 98% of dissolved iron in the deep

oxic ocean is organically bound (Sander and Koschinsky, 2011).

During oxidative continental weathering, iron is retained in

soils in the oxidized state. Iron-chelating and Fe(III)-reducing

bacteria play an important role in iron release from soil hori-

zons (Brantley et al., 2004). Rivers carry a significant load of

iron in the form of organically bound complexes, colloids, and

particulate matter. This continentally derived iron flux is

largely deposited in estuaries due to flocculation of colloids

induced by salinity (Boyle et al., 1977; Escoube et al., 2009).

Where groundwaters are delivered into subterranean estuaries,

redox change as well as pH change during seawater mixing

result in near-quantitative Fe(II) oxidative precipitation

(Rouxel et al., 2008a,b). Outwash in glaciated environments

typically has high loads of mixed-valence silicate species and

colloidal iron, but low concentrations of dissolved Fe and

dissolved organic carbon (Schroth et al., 2011). In contrast,

the dissolved iron flux in rivers flowing over unglaciated set-

tings consists of organically bounded iron complexes and iron

Figure&nbsp;12
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oxyhydroxides. Therefore, rivers flowing through glaciated and

unglaciated terrains deliver different Fe species to the oceans,

which has important implications for Fe bioavailability in

seawater.

Dissolved iron derived from aerosols amounts to

2–12�109 mol per year and corresponds to 30–70% of the

iron flux associated with upwelling deep waters; resuspended

sediments and the diagenetic flux from coastal and shallow-

water sediments are other important components estimated to

contribute 4.7–8.9�1010 mol per year to the oceanic iron

budget (Elrod et al., 2004). Anoxic to suboxic conditions in

pore waters in shelf sediments can lead to an iron shuttle – the

delivery of reactive iron from the shelf to the basin (Lyons and

Severmann, 2006; Severmann et al., 2008). Nonsteady-state

diagenesis in tropical muds deposited on the delta top and

inner shelf along the Amazonia–Guianas coast of South

America provides another example of an environment where

Fe(III) reduction is the predominant metabolic process respon-

sible for organic carbon oxidation. As a consequence, signifi-

cant amounts of Fe are cycled between the bottom waters and

surface sediments (Aller et al., 1986, 2010).

Although most base metals and some iron released from

hydrothermal vents at mid-ocean ridges and in back-arc sys-

tems are precipitated at or immediately above the seawater–

oceanic crust interface, as hot reducing hydrothermal fluids

mix with cold oxidized seawater, iron andmanganese disperse

via hydrothermal plumes as far as hundreds of kilometers

before deposition as metal oxyhydroxide particles, organic

complexes and metal sulfide clusters and nanoparticles (e.g.,

Boyle et al., 2005; Sander and Koschinsky, 2011; Toner et al.,

2009; Yucel et al., 2011; also see Chapter 8.7). Wu et al.

(2011) suggested a long-range (>5000 km) transport of hy-

drothermal iron from the East Pacific Rise. The hydrothermal

iron fluxes to the deep ocean are thought to account for 11–

22% of the deep-ocean iron reservoir, with the total estimated

hydrothermal iron flux being 9�108 mol per year (Bennett

et al., 2009; Tagliabua et al., 2010). Yucel et al. (2011) esti-

mated that nanoparticulate pyrite constitutes up to 10%

of the dissolved Fe (<200 nm) flux from high-temperature

(>300 �C) hydrothermal vents. In addition, Fe-rich smectite

clays, such as nontronite and montmorillonite, preferentially

form close to low- to moderate-temperature, hydrothermally

active areas at the seafloor, where metalliferous sediments

are deposited (Cuadros et al., 2011; Taitel-Goldman and

Singer, 2002).

Concentrations of metals in hydrothermal fluids, including

Fe and Mn, primarily increase with elevated fluid temperatures

and salinity. The composition of the volcanic and plutonic

host rocks as well as magma degassing and subsurface sulfide

dissolution/precipitation may also affect the concentration

of metals in seafloor hydrothermal fluids (Edmond et al.,

1979; Mottl et al., 1979; also see Chapter 8.7). In contrast

to mafic-hosted hydrothermal systems, those sited within

ultramafic rocks developed at slow-spreading ridges tend to

have high contents of dissolved reduced gases (e.g., H2

and CH4) and metals (Douville et al., 2002; Marbler et al.,

2010). Furthermore, because ultramafic-hosted hydrothermal

systems release less H2S, a larger proportion of dissolved

iron precipitates as iron oxyhydroxides (Marbler et al., 2010).
Serpentinization of ultramafic rocks under submarine con-

ditions releases H2 from the fluids and results in partial

Fe(II) oxidation to yield magnetite precipitation (Holm and

Charlou, 2001).

Several submarine deeps in the Red Sea contain hot, anoxic

stratified brine pools derived from rift-hosted hydrothermal

systems that at depth leach Cenozoic evaporites. Metalliferous

sediments containing iron oxides, silicates, sulfides, and car-

bonates precipitate from these brines (Taitel-Goldman and

Singer, 2002). Interestingly, whereas the deep-water brine de-

posits are characterized by hydrothermal signals in terms of Sr

and Nd isotopes and REE patterns, shallower-water deposits of

the Shaban Deep have Sr, Nd, and REE patterns dominated by

a seawater component (Cocherie et al., 1994), which is likely a

reflection of the efficiency of REE sorption onto iron oxides

and the presence of a discrete, stable redoxcline.

Modern shallow-water, iron-rich sediments are restricted to

areas strongly affected by hydrothermal circulation related to

active volcanism, such as within the Santorini Caldera in the

Aegean Sea, where biologically mediated, ferric hydroxide and

opaline silica precipitate (Hanert, 2002; Puchelt, 1973), and in

Lake Malawi, eastern Africa, where nontronite mud and peloids

and limonite with opal ooids are forming (Müller and Förstner,

1973). In addition, iron ooids and pisoids composed of iron

oxyhydroxides admixed with amorphous silica, with volcanic

rock fragments in the center, have been described by Heikoop

et al. (1996) from offshore Mahengetang, Indonesia, in the

photic zone; these could be modern analogues of GIF. Iron-

silicate ooids and peloids were also found from Cape Mala

Pascua to El Fraile Point, Venezuela, in shallow (�35–40 m

depth) waters in an exhalative system connected to ultramafic

rocks via a transform fault zone (Kimberley, 1994). Iron- and

silica-bearing ooids also occur in the bottom sediments of

Lake Chad, West Africa, off the Chari Delta (Lemoalle and

Dupont, 1973).

Modern analogues comparable in scale to BIFs appear to be

unknown, although evidence presented above questions

whether there is a depositional rhythmicity to silica and iron

banding in ancient IFs. Accordingly, we are left to speculate on

the primary compositional structure of BIF.

Low-temperature Si- and Fe-rich hydrothermal deposits

generally form in areas of active venting along mid-ocean

ridge axes (Corliss et al., 1978; Mills, 1995), at off-axis sea-

mounts (Alt, 1988), hot spots, and arc/back-arc submarine

volcanoes (e.g., De Carlo et al., 1983). These submarine vent

deposits generally do not form laterally extensive and very

thick Fe–Si-rich deposits similar to IFs. Nevertheless, local but

relatively thick Fe–Si-rich hydrothermal deposits have been

documented in the recent rock record and on the modern

ocean floor (e.g., Edwards et al., 2011a,b; Hekinian et al.,

1993; Juniper and Fouquet, 1988). For example, silica- and

iron-rich deposits 20 m thick occur at Ocean Drilling Program

(ODP) Site 801 within Jurassic oceanic crust in the western

Pacific Ocean (Alt et al., 1992; Rouxel et al., 2003). Fossil

hydrothermal Si–Fe deposits, comprising umber, jasper, and

IF, have been found in ophiolites as old as 490 Ma (Little et al.,

2004; Robertson, 1975). Recently, a modern analogue of

umber deposits has been described in relation to ultradiffuse

hydrothermal venting at the base of Loihi Seamount, at
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5000 m below sea level (Edwards et al., 2011a,b). This hydro-

thermal system is expressed as regional seafloor seepage with

gelatinous iron- and silica-rich deposits, located between and

over basalt pillows, in places over a meter thick. The genetic

model for umbers has previously invoked deposition of iron

and manganese oxides via water-column precipitation from

hydrothermal fluids, followed by particle fallout and accumu-

lation in local depressions in a ridge flank setting. However,

the laminated Fe–Mn structures located between basalt pillows

observed at the base of Loihi Seamount offer an alternative

interpretation for umber genesis that is consistent with geolog-

ical observations.

In summary, modern environments where iron deposition

occurs are comparable neither in scale nor in extent to those of

ancient IFs. These modern environments nevertheless do pro-

vide some insights into processes that could have operated in

the Precambrian to form IFs.
9.18.6.1 Hydrothermal Pulses of Si Synchronous with Fe
Addition to Seawater

There has been limited work done on the sources of silica in IF

relative to iron. As such, there is still only a nascent under-

standing of some basic aspects of silica deposition in IFs and of

the Precambrian Si cycle. IFs typically contain 34–56 wt% SiO2

(Klein, 2005) and, potentially, represent a major sink for dis-

solved Si in the geological past. Prior to detailed facies and

sequence-stratigraphic analyses of BIF, these deposits were long

considered ambient chemogenic pelagites of the world ocean.

However, it is now known that BIFs are deposits associated

with pulses of reduced iron into basins. Although it is generally

accepted that the source of silica in BIF was ambient seawater

during most of the Precambrian, when the biological sink for

seawater silica was presumably absent (Siever, 1992), the

source of silica to the oceans of that time period remains

uncertain. Two potential sources, similar to that for iron,

have been proposed: submarine hydrothermal fluids

(Mortlock et al., 1993; Wang et al., 2009) and the continents

(Frei and Polat, 2007; Hamade et al., 2003). Support for the

latter proposition has come mainly from the study of Ge/Si

ratios in IFs, as hydrothermal fluids and rivers have very differ-

ent Ge/Si ratios (Froelich et al., 1985; Mortlock et al., 1993).

On the basis of covariation of Ge/Si ratios with silica content in

the �2.5 Ga Dales Gorge Member of the Brockman Iron For-

mation (Hamersley Group, Western Australia), Hamade et al.

(2003) proposed a decoupling of Fe and Si sources, with Si

being predominantly derived from riverine waters having low

Ge/Si ratios due to weathering of continental landmasses.

Caution is required in this interpretation, however, due to the

strong Ge fractionation relative to Si by sorption onto iron

oxyhydroxides (Pokrovsky et al., 2006) or by quartz precipita-

tion (Evans and Derry, 2002). In addition, release of Ge to pore

waters may also affect Ge/Si ratios (Rouxel et al., 2006). In

either case, Ge/Si ratios in cherts may not reflect seawater

composition but instead record multiple, unrelated, and geo-

logically protracted processes. On the other hand, as men-

tioned above, Si isotopes are consistent with a hydrothermal

Si source, suggesting that there were hydrothermal pulses of Si

synchronous with Fe addition to seawater that in part drove IF

deposition.
Ferric oxyhydroxide particles are highly reactive toward

dissolved silica (e.g., Konhauser et al., 2007b), implying that

drawdown of Fe from seawater was accompanied by

drawdown of silica (e.g., Slack et al., 2007). It is possible that

the silica component was scavenged from seawater during

particle sedimentation and later was mobilized during diagen-

esis (see Fischer and Knoll, 2009, for additional discussion).

Consistent with this interpretation, in GIF there are Fe-bearing

chert peloids, deposited from suspension, and Fe-free chert

cement that was deposited shortly after deposition, because

the peloids have floating contacts. On the other hand, the

petrographic and field evidence indicates that chert in bands

in BIF was not a direct chemical precipitate from seawater, but

rather a pore-filling cement and replacement of sediment; that

is, chert in IFs is not a diagenetic replacement of silica that

precipitated in the water column.

A relevant geological perspective to address this issue comes

from occurrences of chert in sequences that record relative

magmatic quiescence and that have a similar duration and

sedimentation rate to those that were deposited during periods

of enhanced hydrothermal activity leading to the deposition of

IFs. That silica was present in seawater during deposition in all

Hamersley basin sequences is shown by the universal presence

within them of bedded cherts or seafloor hardgrounds. For

instance, sedimentation units in black shale of the Bee Gorge

Supersequence, which directly underlies the Brockman Super-

sequence (predominantly consisting of IF), are capped by bed-

ded cherts in exactly the samemanner as tops of sedimentation

units in the overlying IFs. There are hundreds of Bee Gorge

Member ‘cycles’ from shale to bedded chert at scales of 1 m and

less. In contrast, only a few seafloor replacement chert units

exist in the black shale condensed sections in the underlying

Roy Hill Member of the �2.6 Ga Jeerinah Formation, which is

not associated with IFs or increased hydrothermal activity, but

was deposited at a similar sedimentation rate. Monotonous

shales containing rare interbedded chert only return at the

base of the �2.4 Ga Turee Creek Supersequence, just above

the Boolgeeda Iron Formation.

A possible explanation for these observations is that Si

concentration in the water column was much lower during

deposition of the Roy Hill Member. If this interpretation is

correct, it implies that sedimentary basins at the time when IFs

were deposited also contained higher seawater silica concen-

trations. It seems likely, therefore, that the silica content of the

Precambrian ocean was not constant and that secular varia-

tions existed in [Si], like in [Fe], linked with changes in hydro-

thermal activity.
9.18.6.2 Oxidation Mechanism: Biological versus
Nonbiological

Basic conditions leading to the deposition of IFs in ancient

oceans are generally agreed upon: the precursor sediments pre-

cipitated from seawater containing micromolar (<100 mmol)

levels of ferrous iron (Holland, 1973, 1984). An amplified

marine reservoir of dissolved iron was possible due to the pres-

ence of (1) a reducing atmosphere or one having a low oxidizing

potential (Bekker et al., 2004; Holland, 1984), (2) low marine

sulfate and sulfide concentrations (Habicht et al., 2002), and (3)

a high hydrothermal flux of iron (Kump and Seyfried, 2005). It

is generally agreed that IF deposition is linked with an oxidative
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mechanism that converted dissolved Fe(II) into solid-phase iron

oxyhydroxide particles that then settled and accumulated on the

seafloor. The caveat is, however, that unequivocal original grains

of ferric oxyhydroxide in IFs have not been conclusively

documented.
Specific mechanisms involved in the deposition of

IFs (Figure 13) remain poorly resolved despite more than

a century of investigation (e.g., Beukes and Gutzmer, 2008;

Harder, 1919; Klein, 2005; Ohmoto et al., 2006). Given

that IF deposition spans major evolutionary changes in Earth’s

Figure&nbsp;13
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surface composition, from an early anoxic atmosphere

dominated by CO2 and CH4 to one that became partially

oxygenated and CO2-rich (e.g., Bekker and Kaufman,

2007), it is likely that IFs formed via different mechanisms

during Precambrian time. The three mechanisms most

widely supported in the literature are briefly summarized

below.

9.18.6.2.1 Oxidation of Fe(II) by cyanobacterial O2

The classic model for IF deposition invokes ferric iron precip-

itation occurring at the interface between oxygenated shallow

waters and reduced upwelling iron-rich waters (Cloud, 1965,

1973; Figure 13(a)):

2Fe2þ þ 0:5O2 þ 5H2O $ 2FeðOHÞ3 þ 4Hþ

Oxygen is assumed to have been produced by planktonic oxy-

genic photosynthesizers. Historically, cyanobacteria were in-

ferred to be the primary producers utilizing oxygenic

photosynthesis in Archean oceans, because compelling evidence

for an eukaryotic fossil record before �1.9 Ga is absent (Han

and Runnegar, 1992; Javaux, 2011; Knoll et al., 2006). Several

lines of evidence tentatively suggest that oxygenic photosynthe-

sis evolved during the Neoarchean (e.g., Buick, 1992; Buick

et al., 2006; Scott et al., 2011); however, at present, direct

‘smoking gun’ evidence for the former existence of cyanobacteria

during that time period remains lacking (e.g., Brocks, 2011).

9.18.6.2.2 Metabolic Fe(II) oxidation
Metabolic Fe(II) oxidation is the other most commonly in-

voked mechanism of IF deposition (Figure 13(b)). The poten-

tial importance of this process has been recognized for almost a

century (e.g., Harder, 1919). However, it was not until a surge

in the amount of interest and research on microbial iron

oxidation over the past 10–20 years that this model for IF

deposition became prevalent.

Three main pathways of metabolic microbial iron oxidation

exist: (1) microaerophilic, (2) anoxygenic photosynthetic, and

(3) nitrate-dependent. Microaerophilic bacteria, such as Gallio-

nella ferruginea, Leptothrix ochracea, and Mariprofundus ferrooxy-

dans, play an important role in Fe(II) oxidation in modern iron

springs and seafloor hydrothermal vent systems. In addition to

using ferrous iron as their electron donor, microaerophilic Fe(II)

oxidizers use oxygen as their electron acceptor and take in carbon

dioxide, which is then reduced to organic carbon through the

process of chemoautorophy:

6Fe2þ þ 0:5O2 þ CO2 þ 16H2O
$ CH2O½ � þ 6FeðOHÞ3 þ 12Hþ

Presently known microaerophilic Fe(II) oxidizers belong to the

phylum Proteobacteria, but the metabolic pathway appears to be

nested within several different clades of this broad grouping of

bacteria. Interestingly, microaerophilic Fe(II) oxidizers have

been recently discovered to be widespread in marine systems.

For example, a strain of bacteria that is morphologically indis-

tinguishable but phylogenetically distinct from Gallionella was

found to be abundant at the iron-rich hydrothermal vents on

Loihi Seamount and other seafloor, iron-rich hydrothermal

systems (Emerson and Moyer, 2002; McAllister et al., 2011).

Under low oxygen conditions, microaerophilic microbial Fe(II)
oxidizers can dominate the iron cycle because the rate of micro-

bial Fe(II) oxidation can be more than 50 times faster than

abiotic rates (e.g., Søgaard et al., 2000). Additionally, Fe(II)-

oxidizing bacteria are present, and may be abundant, at the

chemocline in ferruginous lakes, where ferric iron-rich sedi-

ments are deposited (e.g., Pavin Lake in France; Lehours et al.,

2007).

Anoxygenic photosynthetic oxidation – photoferrotrophy –

is another metabolic Fe(II) oxidation pathway. This pathway

was predicted to be common on early Earth and linked to IF

deposition (e.g., Baur, 1979; Hartman, 1984) before organisms

capable of this metabolism were first cultured in the early

1990s (Widdel et al., 1993). Since then, a variety of phyloge-

netically diverse strains of anoxygenic Fe(II)-oxidizing photo-

trophs have been recognized, including strains of purple sulfur,

and purple nonsulfur and green sulfur bacteria. Anoxygenic

photosynthesis uses Fe(II) instead of H2O as an electron

donor, producing Fe(III) rather than dioxygen (Ehrenreich

and Widdel, 1994), according to the following reaction:

4Fe2þþ11H2OþCO2$ CH2O½ �þ4FeðOHÞ3þ8Hþ

In the past two decades, a number of experimental studies have

confirmed that various purple and green bacteria can use Fe(II)

as a reductant for carbon dioxide fixation (e.g., Heising et al.,

1999; Straub et al., 1999; Widdel et al., 1993).

More recently, organisms capable of metabolically coupling

iron oxidation to nitrate reduction have been discovered (e.g.,

Edwards et al., 2003; Straub et al., 1996), providing another

possible microbially mediated mechanism for IF deposition:

10Fe2þ þ 2NO3
� þ 24H2O ! 10FeðOHÞ3 þN2 þ 18Hþ

Nitrate-dependent Fe(II) oxidation has been shown to be wide-

spread in sediments (Straub and Buchholz-Cleven, 1998).

Most of the described nitrate-dependent Fe(II)-oxidizing

strains require an organic substrate (e.g., acetate), although

lithoautotrophic, nitrate-reducing Fe-oxidizing strains (a- and
g-Proteobacteria) have been isolated in pure culture (Edwards

et al., 2003). A chemolithoautotrophic Fe(II)-oxidizing, ni-

trate-reducing enrichment culture has been identified (Straub

et al., 1996) that is capable of oxidizing Fe(II) with nitrate

autotrophically. However, this culture consists of chemoheter-

otrophic nitrate-reducing bacteria and a novel chemolithoau-

totrophic Fe(II)-oxidizing bacterium (Blothe and Roden,

2009). The inability (thus far) in laboratory experiments to

obtain a pure culture of nitrate-reducing iron-oxidizers sug-

gests that a consortium of organisms is needed for nitrate-

dependent Fe(II) oxidation.

There is a strong basis to believe that metabolic Fe(II)

oxidation could have driven IF deposition. Simple modeling

indicates that even modest populations of microaerophilic or

photosynthetic iron oxidizers could account for deposition of

IFs, even assuming rapid accumulation rates (Konhauser et al.,

2002). Recent modeling indicates that photosynthetic Fe(II)

oxidation can result in near-to-quantitative drawdown of up-

welling ferrous iron under modest ocean mixing and circula-

tion conditions (e.g., Kappler et al., 2005). Furthermore,

metabolic Fe(II) oxidation is currently driving the deposition

of extremely iron-rich sediments in ferruginous Lake Matano
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(Crowe et al., 2008), and microaerophilic iron oxidizers are

likely important in the production of IF-like sediments on the

seafloor, such as the Loihi hydrothermal field (Emerson and

Moyer, 2002). Metabolic iron oxidation thus appears to be

common in modern iron-replete aquatic systems. It follows

that these processes likely were common in iron-rich water

columns in ancient oceans.

Numerous studies have documented a fossil record of

microbially mediated iron oxidation in Proterozoic and youn-

ger, iron oxide-rich sedimentary rocks (Grenne and Slack,

2003; Juniper and Fouquet, 1988; Lager, 2001; Little et al.,

2004; Planavsky et al., 2009; Slack et al., 2007) but not in

Archean IFs. Microaerophilic Fe(II) oxidizers produce distinc-

tive oxide-coated structures that have been found in jaspers

and IF dating back to the Paleoproterozoic (Lager, 2001; Pla-

navsky et al., 2009; Slack et al., 2007). Gallionella-type or

Mariprofundus-like oxidizers are bean-shaped cells that grow

at the terminus of a helical structure called a stalk, which is

composed largely of polysaccharides typically encrusted by

ferrihydrite (Comolli et al., 2011), whereas Leptothrix-type ox-

idizers produce an iron-encrusted sheath. The apparent ab-

sence of these fossil remains in the Archean, contrasted to

their local abundance in younger iron oxide-rich rocks,

might be a signal of a temporal increase in the involvement

of microaerophilic oxidizers. However, it has been demon-

strated that G. ferruginea does not form a stalk under the

lower range of oxygen conditions at which these organisms

can thrive (Hallbeck and Pedersen, 1990). Therefore, generally

more reducing conditions in the Archean may have precluded

template-mediated oxide formation (i.e., formation of oxide-

coated sheaths and helical structures), but might not necessarily

have excluded microaerophilic oxidizers.

It may be possible to use geochemical tools rather than the

fossil record to pinpoint oxidation mechanisms. For instance,

the REE signature of IFs through time indicates the lack of a

discrete redoxcline prior to �2.4 Ga in most sedimentary ba-

sins where IFs were deposited. This is consistent with a role for

anoxic or microaerophilic iron-oxidizers in IF deposition

(Planavsky et al., 2010a,b).
9.18.6.2.3 Ultraviolet photooxidation of Fe(II)
As an alternative to biological models for Fe(II) oxidation,

Cairns-Smith (1978) proposed that ferrous iron was photoox-

idized by the high flux of ultraviolet (UV) photons that would

have reached Earth’s surface prior to the rise of atmospheric

oxygen and the subsequent development of a protective ozone

layer (Figure 13(c)). This reaction proceeds readily in acidic

waters exposed to wavelengths in the 200–300 nm range:

2Fe2þ aqð Þ þ 2Hþ þ hv ! 2Fe3þ aqð Þ þH2

Braterman et al. (1983) and Anbar and Holland (1992)

further explored the viability of the photochemical oxidation

model at circumneutral pH over a range of UV wavelengths

(217–406 nm). Based on a quantum yield determined from

proton flux, they suggested that at pH >6.5 the presence of the

dissolved ferrous iron species Fe(OH)þ is important because it

is oxidized by photons having l¼300–450 nm, a wavelength

region where the solar flux is more intense and where seawater

is more transparent as compared to l<300 nm. The dissolved
ferric iron formed is subsequently hydrolyzed and precipitated

as ferric oxyhydroxide. Extrapolating from these experiments,

a mean photochemical oxidation rate of 0.5 mol Fe(II)

m�2 year�1 has been estimated at rapid upwelling rates

(4000 m year�1), indicating that this process alone could

have accounted for deposition of as much as 1.8�1014 mol

Fe(III) annually (François, 1986). Other estimates place

the total amount of Fe(II) photooxidized annually at

2.3�1013 mol (Braterman and Cairns-Smith, 1986). These

rates are much greater than the annual rates inferred during

deposition of the largest Archean and Paleoproterozoic BIF

(Pickard, 2002, 2003), although, as mentioned above, it is

difficult to constrain maximum sedimentation rates for IFs.

Importantly, the earlier photochemical models focused on

determining the rates of Fe(II) photooxidation at, or close to,

thermodynamic equilibrium with 0.02 mM Fe and under

rather simplistic geochemical conditions in which other ions

were unavailable for reaction with dissolved Fe(II). In this

regard, Konhauser et al. (2007a) performed a series of experi-

ments designed to mimic conditions in a photic zone proximal

to a seamount-type vent system effusing elevated concentra-

tions of Fe(II) into seawater that was saturated with respect to

amorphous silica and calcite. Under those conditions, the

photochemical contribution to solid-phase precipitation was

negligible compared to the formation of the ferrous silicate

mineral, greenalite, or the ferrous carbonate, siderite. Many

IFs are composed predominantly of iron carbonates or iron

silicates, both ofwhich have beenwidely suggested to be abiotic

marine precipitates (e.g., Ohmoto et al., 2004). However, as

discussed above, based on petrographic and isotopic constr-

aints, siderite in most IFs is an early diagenetic, or later, mineral

phase. In experiments where Fe(II) was exposed to either photo-

trophic Fe(II)-oxidizing bacteria or dioxygen, ferric oxyhydroxide

formed considerably faster than by UV-photooxidation.

As an alternative to these classical models, Foustoukos and

Bekker (2008) argued that some deep-water, volcanic-hosted

IFs deposited in association with VMS deposits could have

formed by oxidation during phase separation in the subsurface

into vapor and brine, with hydrogen and HCl being removed

into the vapor phase, generating oxidizing and alkaline condi-

tions in the brine. During this process, transition metals would

form chloro-complexes and would then be enriched in the

brine, which would be expelled from magmatic chambers

during large eruptions. This hypothesis, although not yet sup-

ported by either detailed modeling or empirical data, warrants

serious consideration because it has the potential to explain

the enigmatic association of Archean jasper and oxide-facies

IF with some Cu-rich VMS deposits that formed in deep-water

settings.
9.18.7 Secular Trends for Exhalites, IFs, and
VMS Deposits

9.18.7.1 Relationships among Mantle Plumes, IF
Deposition, and VMS Mineralization

Secular trends in the distribution of Precambrian IFs and VMS

deposits (Figure 14) have been discussed previously by many

authors (e.g., Bekker et al., 2010; Groves et al., 2005; Huston

and Logan, 2004; Huston et al., 2010; Isley and Abbott, 1999;
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James, 1983; Meyer, 1988; Veizer, 1976). Although the depo-

sition of IFs has been genetically linked to mantle plume

breakout events and mafic volcanism (Isley and Abbott,

1999), the largest VMS deposits are instead generated in arc

settings marked by bimodal volcanism (Franklin et al., 2005).

Given that IFs were likely precipitated from hydrothermal
plumes and that iron in hydrothermal plumes was released

by submarine hydrothermal alteration of volcanic rocks in the

deeper part of the ocean, large VMS deposits should have

formed contemporaneously near the volcanic sources. Exha-

lites that formed in stratigraphic association with Cu-rich VMS

deposits provide a unique record of deep-water ocean redox

Figure&nbsp;14
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state (Slack et al., 2007). The following sections explore secular

trends in seafloor-hydrothermal exhalites and IFs to infer the

ocean redox state during their deposition.
9.18.7.2 Secular Patterns in Precambrian VMS-Related
Exhalites

There is consensus that the source of iron in Precambrian IFs

was in hydrothermal fluids that vented into the deep ocean

during submarine volcanism (Bekker et al., 2010, and refer-

ences therein). Because the generation and transport of this

iron are believed to be linked to hydrothermal processes and

anoxic conditions, secular trends of IFs, VMS deposits, and the

redox state of coeval deep seawater aid in understanding of

episodic IF deposition during Precambrian time (Figure 14).

Insights into ancient deep-ocean redox states come from di-

verse proxies, one of which is the nature of exhalites that

formed by precipitation from hydrothermal vents and plumes

as parts of Cu-rich VMS systems. Cu-rich VMS deposit forma-

tion is restricted to settings with fluids having temperatures

�300 �C and water depths of >850 m, which permit the pre-

cipitation of relatively abundant Cu (>1wt%) in sulfides on or

near the seafloor. At shallower depths, hydrothermal fluids at

this temperature, assuming present seawater salinity (3 M

NaCl), boil in the subsurface and do not produce Cu-rich

massive sulfide (Slack et al., 2007).

The exhalites occur as stratiform layers or lenses, up to

several meters thick, typically in the hanging wall above VMS

deposits or at the same stratigraphic level for hundreds of

meters or more along strike (Spry et al., 2000). Given abun-

dant evidence of exhalite mineralization on the modern sea-

floor (Hannington et al., 1995; also see Chapter 8.7), ancient

exhalites are widely interpreted as precipitates from spatially

associated VMS systems (e.g., Grenne and Slack, 2005; Isley,

1995; Peter, 2003). The mineralogy and geochemistry of exha-

lites in the geological record vary widely (Spry et al., 2000), but

mainly consist of fine-grained quartz (chert) and one or more

Fe-rich minerals including hematite, magnetite, greenalite,

stilpnomelane, grunerite, siderite, ankerite, pyrite, or pyrrho-

tite; some exhalites have abundant Mn (in rhodochrosite,

kutnahorite, and spessartine), Ba (in barite, hyalophane, and

celsian), P (in apatite), F (in fluorite), or B (in tourmaline).

In addition to the requirement of a Cu-rich mineralogy in

related VMS deposits, several other limitations exist for using

exhalites as a paleoredox proxy (see Bekker et al., 2010; Slack

et al., 2007).

Mineralogical data for 45 Precambrian exhalites linked to

Cu-rich VMS deposits (Figure 14; Appendix 2) show a secular

pattern in which exhalites older than �1.85 Ga mainly com-

prise Fe-silicates, sulfide, sulfidic shale, pyritic chert, or pyritic

tuff. In contrast, exhalites younger than �1.85 Ga typically

have abundant iron oxides in jasper, hematitic IF, or magne-

titic IF as well as Fe-silicates in some cases. Occurrence of the

former group of reduced-facies exhalites, which predominates

in the Archean and early Paleoproterozoic, suggests deposi-

tion on the seafloor under anoxic and possibly sulfidic bot-

tom waters, based on geochemical and thermodynamic

arguments (Huston and Logan, 2004; Ohmoto et al., 2006).

Younger Precambrian exhalites that contain abundant hema-

tite and magnetite have relatively high Fe(III)/Fe(II) ratios
that rule out sulfidic bottom waters during mineralization,

assuming no oxidation took place during postdepositional

alteration, diagenesis, metamorphism, or weathering (Slack

et al., 2009). The presence of hematite or magnetite in these

exhalites requires at least suboxic conditions (<5 mM O2) in

coeval deep seawater, in order to permit the precipitation of

ferric oxyhydroxide precursors as documented in modern

seafloor-hydrothermal vents and plumes (Grenne and Slack,

2005; Slack et al., 2007). It is possible that magnetite in

ancient exhalites had a mixed ferrous–ferric ‘green rust’ pre-

cursor such as Fe(OH)2, which in theory could have formed

in anoxic seawater (Murray, 1979). This precursor is unlikely,

however, because Archean and Paleoproterozoic seawater, as

well as diagenetic pore fluids, probably were saturated in

FeCO3 prior to Fe(OH)2 saturation, owing to high atmo-

spheric pCO2 during this time period and resulting bicarbon-

ate saturation in coeval seawater and shallow pore waters

(Slack et al., 2009, and references therein). Fully oxic condi-

tions for contemporaneous deep seawater are also dis-

counted, based on REE data on late Paleoproterozoic

hematite- and magnetite-rich exhalites that have small nega-

tive to small positive shale-normalized Ce anomalies, in con-

trast to the larger negative Ce anomalies that characterize

modern iron oxyhydroxide deposits (Slack et al., 2007,

2009).

There are several exceptions to the patterns of Fe-silicate and

sulfide exhalites that are genetically linked to Archean and

early Paleoproterozoic Cu-rich VMS deposits (Figure 14).

These exceptions, which include magnetite IF, hematite IF, or

jasper, occur at the following deposits: 2960 Ma Scuddles,

Western Australia; 2720 Ma Geco and Willroy, Ontario,

Canada; �2530 Ma Wutai, Shanxi Province, China; and

�1870 Ma Bend and Eisenbrey, Wisconsin, USA. The presence

of abundant Fe(III) in hematite and/or magnetite within these

>1850 Ma deposits (Slack and Cannon, 2009) should be

further evaluated to constrain their origin.

The absence of Cu-rich VMS deposits during some periods

of Earth history precludes the use of exhalites for evaluating

the redox state of coeval deep oceans. For example, several

VMS deposits have been documented in sequences

>3000 Ma, including the oldest (3465 Ma) deposits at Big

Stubby and Lennons Find in the Pilbara craton of Western

Australia. These deposits contain abundant Zn and Pb with

little or no elevated Cu (Franklin et al., 2005; Huston et al.,

2002; Appendix 2), and hence could have formed at relatively

shallow depths of a few hundred meters. The oldest Cu-rich

VMS deposit with a genetically linked exhalite unit is the

�2.97 Ga Miranda deposit in South Africa (Slack and Can-

non, 2009). A long gap of �620 Ma in exhalite data exists

from �2530 to 1910 Ma, during which 16 VMS deposits are

known (Franklin et al., 2005; Appendix 2), but none has a

reported exhalite. Additional long gaps in the record of Pre-

cambrian deep-marine exhalite mineralization of this type are

from �1700–1400 Ma and �1000–770 Ma. The emerging

record of deep-ocean redox state from studies of exhalites

associated with VMS deposits is entirely consistent with

other geochemical and geological proxies for the rise of at-

mospheric oxygen in the early Paleoproterozoic and suboxic

deep-ocean redox state in the late Paleoproterozoic and

Mesoproterozoic.
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9.18.7.3 Secular Patterns in Sedimentary Iron Deposits

In order to evaluate a secular pattern in sedimentary iron de-

posits, we divide Earth history into time intervals characterized

by different redox states of the atmosphere–ocean system. The

following discussion begins with the Eoarchean and progresses

sequentially toward the modern iron cycle.

9.18.7.3.1 Eoarchean IFs
In the Isua greenstone belt of western Greenland, �3.8 Ga

chert and BIF at amphibolite facies metamorphic grade

are tectonically interleaved with amphibolite that locally

preserves pillow structures (Myers, 2001). The BIF consists

predominantly of quartz andmagnetite, with minor cumming-

tonite/grunerite, actinolite, hornblende, and calcite (Dymek

and Klein, 1988). Polat and Frei (2005) observed significant

enrichments of Fe in Isua pillow basalts, which they attributed

to leaching from oceanic crust and precipitation on the sea-

floor from hydrothermal fluids, suggesting that high-

temperature hydrothermal alteration of the immediate sub-

strate might have played an important role in deposition of

the Isua BIF.

In the �4.3–3.8 Ga Nuvvuagittuq greenstone belt of the

northeastern Superior Province of Canada, quartz–magnetite–

grunerite BIF, as much as 30 m thick, and other siliceous rocks

are intercalated with metasomatized amphibolite (Dauphas

et al., 2007; Mloszewska et al., 2012; O’Neil et al., 2007).

The REEþY profiles and Fe isotope compositions of this BIF

are consistent with its origin as marine exhalite. Low Al2O3,

TiO2, and high field strength element (HFSE) concentrations

show that it is relatively detritus-free. There are distinctly

seawater-like REEþY profiles and consistently positive Eu

anomalies. These features suggest that the rocks preserved

some of their primary composition despite metamorphic over-

print (Mloszewska et al., 2012).

9.18.7.3.2 Paleoarchean IFs
Paleoarchean IFs are intercalated with bedded chert in ultra-

mafic to felsic volcanic successions in greenstone belts of the

Kaapvaal and Pilbara cratons. Bedded cherts consist, to a large

extent, of silicified sedimentary and volcaniclastic rocks. Al-

though silicification is common in modern and ancient low-

temperature hydrothermal systems in both continental and

oceanic settings, the abundance of chert in the Paleoarchean

is striking. In contrast, IFs are relatively rare in the >3.0 Ga

record, despite evidence for widespread leaching of iron from

seafloor rocks during hydrothermal alteration (Hofmann and

Harris, 2008). It is possible that the absence of widespread IF

deposition during this time period reflects preservational bias.

However, many cherts of this age range are uniformly under-

lain by zones of low-temperature seafloor alteration up to

several tens of meters thick (Duchac and Hanor, 1987;

Hofmann and Harris, 2008; Hofmann and Wilson, 2007),

which suggests the predominance of low-temperature hydro-

thermal processes at this time. These zones are characterized by

silicification and depletion of many elements, including Fe,

Mg, and some transition and base metals, which were likely

exhaled by hydrothermal systems to the Paleoarchean ocean,

thus providing a source of dissolved iron (Hanor and Duchac,

1990; Hofmann and Harris, 2008).
The Onverwacht Group of the Barberton greenstone belt,

South Africa, records a time interval of �240 My, but contains

only a single stratigraphic unit that includes IF. The �3.4 Ga

Buck Reef Chert is an unusually thick sequence of predomi-

nantly black and white banded chert that contains a 100-

m-thick unit of banded ferruginous chert, in which siderite is

regarded to be the main iron-bearing mineral at depth (Tice

and Lowe 2004). Also in the Barberton greenstone belt,

jaspilitic IF units, several tens of meters thick, are intercalated

with ferruginous shale of the 3.26–3.23 Ga Fig Tree Group

(Heinrichs, 1980; Hofmann, 2005). Felsic volcanic detritus

and evidence for hydrothermal activity in rocks interlayered

with the IF are widespread (Hofmann, 2011). Two thin jaspi-

litic units interbedded with ferruginous shale also occur at the

top of fining-upward sequences within the �3.23 Ga Moodies

Group of the Barberton greenstone belt and in association with

volcanic rocks (Eriksson, 1983).

The Iron Ore Group of the Singhbhum craton in India

contains economically important BIF deposits that likely rep-

resent different stratigraphic units (e.g., Banerji, 1977). In the

southern part of the craton, a low-metamorphic grade, 120-m-

thick BIF overlies a sequence of basalts and felsic volcanic rocks

dated at 3.51 Ga, possibly indicating a Paleoarchean age for

this BIF (Mukhopadhyay et al., 2008), although contact re-

lationships with the underlying dated succession are unclear.

In the western part of the craton, BIFs are intercalated with

shales that are likely Meso- to Neoarchean in age. Absolute age

constraints are not available, highlighting the need for high-

precision geochronological studies of the Iron Ore Group in

this region.

Amphibolite- to granulite-facies grade BIFs associated with

amphibolites, calc-silicate rocks (carbonate-altered mafic

rocks), talc-carbonate schists, and metacherts are present in a

number of Paleoarchean high-grade remnants of greenstone

belts in South Africa (e.g., Assegaai–De Kraalen granitoid-

greenstone terrane; Saha et al., 2010), Zimbabwe (e.g.,

Sebakwean Group; Wilson, 1968), India (e.g., Sargur Group;

Naqvi and Rogers, 1987), and elsewhere. Strong deformation

and metamorphism make their paleoenvironmental signifi-

cance unclear. The close spatial association with siliceous and

carbonate-bearing metasomatized lithologies suggests a strong

hydrothermal influence on the formation of these BIF.

9.18.7.3.3 Neoarchean to Mesoarchean IFs
BIFs are a distinct component of Neo- to Mesoarchean green-

stone belts. These BIFs are either intercalated with submarine

volcanic rocks or associated with sedimentary strata of

continental-shelf environments. Good examples of continental

shelf BIF deposits are found on several cratons that experienced

transient crustal stability prior to the global magmatic event at

2.7 Ga. The 2.83–2.70 GaManjeri Formation of the Zimbabwe

craton is a fluvial to shallow-marine succession that was de-

posited unconformably on older greenstones and granitoids

(Hofmann and Kusky, 2004; Hunter et al., 1998). The IF of this

unit is intercalated with quartz arenite, shale, and carbonate

strata, and lacks obvious links to coeval volcanic rocks. Litho-

logically similar sequences include the �2.8 Ga Central Slave

Cover Group (Bleeker et al., 1999) of the Slave craton, the

�2.7 Ga Steep Rock Group in the Wabigoon greenstone belt

and correlative sequences in Canada (Stone, 2010; Tomlinson
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et al., 2003; Wilks and Nisbet, 1988), and the �2.7 Ga

Bababudan Group of the Dharwar craton in India (Srinivasan

and Ojakangas, 1986; Trendall et al., 1997).

IFs interlayered with volcanic rocks can be found in most

Mesoarchean and Neoarchean greenstone belts. They are com-

monly thin, less than 20 m thick, and laterally discontinuous.

The volcanic components typically consist of mafic–ultramafic

or bimodal volcanic rocks that erupted in relatively deep-water,

oceanic settings. In several cases, a direct genetic relationship

has been documented between volcanic activity and deposi-

tion of IF, reflecting volcanic and hydrothermal activity both

proximal and distal to volcanic centers (Chown et al., 2000;

Fyon et al., 1992).

Mesoarchean IFs that developed in cratonic cover succes-

sions between 3.0 and 2.9 Ga are well documented in the

Witwatersrand and Pongola basins in the southeastern part of

the Kaapvaal craton in South Africa (Beukes and Cairncross,

1991; Smith, 2007). These IFs are laterally extensive, but thin

(�10 m thick), and commonly are interbedded with ferrugi-

nous shales deposited during marine transgressions. There are

no direct relationships with volcanic rocks or volcanism at that

time, in accord with trace element and Nd isotope data on the

oldest IF of the Mozaan Group in the Pongola basin (Alexander

et al., 2008), which indicate a strong continental contribution

to the trace element inventory of these IFs.

9.18.7.3.4 Neoarchean IFs
IFs of 2.7–2.45 Ga age are the most laterally extensive and

economically valuable of any time in Earth’s history. The oldest

extensive and thick sediment-hosted BIF is the�2.60 GaMarra

Mamba Formation of the Hamersley Province in Western

Australia. It was deposited in a deep-water basinal setting on

a passive continental margin during sea-level highstand of the

Marra Mamba Supersequence, and has an average thickness of

about 210 m (Krapež et al., 2003; Trendall and Blockley,

1970). This BIF carries a pronounced positive Eu anomaly

(Alibert and McCulloch, 1993), suggesting a strong hydrother-

mal imprint on REE systematics of the global ocean during its

deposition. Although the Hamersley and Transvaal successions

are equivalent in age and are correlative based on sequence

stratigraphy, only ankerite-banded chert of the Campbellrand

succession in South Africa corresponds to the Marra Mamba

BIF (Beukes and Gutzmer, 2008). A mantle plume breakout

event comparable in age to that of the Marra Mamba Forma-

tion is unknown.

Only one IF (Bruno’s Band) occurs on the Pilbara and

Kaapvaal cratons stratigraphically between the �2.60 Ga

Marra Mamba IF and the overlying major 2.50–2.45 Ga IFs

(Beukes and Gutzmer, 2008; Krapež et al., 2003). This younger

episode of IF deposition closely corresponds with volcanism

during the 2.50–2.45 Ga series of mantle plume breakout

events of global extent (e.g., Heaman, 1997) and immediately

preceded a supercontinent assembly (Barley et al., 2005). De-

position of these IFs occurred on a reactivated continental

margin (Krapež et al., 2003), during a rise in sea level. In

addition to these well-dated, time-equivalent IFs, those in the

Quadrilátero Ferrı́fero region in Brazil, Middleback Ridge

(Gawler craton) in South Australia, Krivoy Rog area in Ukraine,

and KMA region in Russia are broadly similar in age based on

available geochronological and chemostratigraphic
constraints, as well as on similar patterns of megabanding

(Bekker et al., 2003; Kulik and Korzhnev, 1997; Prilutzky

et al., 1992; Spier et al., 2007; Szpunar et al., 2011). These

giant IFs were also deposited on reactivated continental mar-

gins and are separated from overlying Paleoproterozoic se-

quences by a prominent unconformity. The unconformities

correspond to a long gap in sedimentation following super-

continent assembly at �2.4 Ga. Assuming that these IFs are

similar in age, more than 70 wt% of the total original iron

resources in Precambrian IFs was deposited during the time

interval 2.60–2.40 Ga. Surprisingly, a coeval peak in VMS de-

position is absent from the geologic record (Figure 14); in fact,

no VMS deposits are known to have formed within this age

range (Franklin et al., 2005; Appendix 2). Texturally, these IF

deposits differ from the older BIF because they contain inter-

vals having granular textures as well as micro- and nanospheres

of hematite (Ahn and Buseck, 1990; Ayres, 1972; Beukes and

Klein, 1990; Simonson and Goode, 1989; Spier et al., 2007).

However, most granules consist of iron silicates and carbonates

with only rare hematite granules; no hematite-coated grains

have been documented (Beukes and Klein, 1990; Simonson

and Goode, 1989; Spier et al., 2007). Such features are impor-

tant because deposition of these IFs directly preceded the GOE,

and post-GOE GIFs predominantly contain hematite as the

iron-bearing mineral within granules and on coated grains.

This observation implies that processes responsible for IF de-

position before and after the rise of atmospheric oxygen were

different, requiring more than one model to explain their

formation.

9.18.7.3.5 IFs deposited after the GOE and before �1.93 Ga
Giant IFs were not deposited between �2.4 and 1.88 Ga.

Nonetheless, sediment-hosted and volcanic-hosted IFs are

known from this time period. Shortly after the rise of atmo-

spheric oxygen at �2.4 Ga (e.g., Bekker et al., 2004), oolitic

hematitic ironstone of the lower Timeball Hill Formation,

South Africa, was deposited in shallow water above fair-

weather wave base (Dorland, 1999; Schweigart, 1965). Its

deposition at �2316 Ma (Hannah et al., 2004) may coincide

with a magmatic event at �2.32 Ga (e.g., Berman et al., 2005;

Eriksson et al., 1994a,b; Fetter et al., 2000; Hartlaub et al.,

2007). The significance of this event and whether it is related

to mantle processes are unknown. Correlative IFs are not

documented on other continents.

The slightly younger �2.22 Ga Hotazel Formation, also in

South Africa, contains IF interlayered with manganese-rich

sedimentary rocks; this is the largest manganese deposit in

the world (Tsikos et al., 2003). The iron and manganese for-

mation lies above, and is most likely genetically related to, the

submarine-emplaced Ongeluk Lavas of mafic to intermediate

composition that are coeval with a �2.22 Ga mantle plume

breakout event (Ernst and Buchan, 2001). Although volcanic

rocks and dikes related to this event are developed on nearly all

continents, other iron and manganese formations of this age

are unknown. Iron- and manganese-rich strata of the Hotazel

Formation consist of three upward-shallowing sequences de-

posited in a slope environment (Schneiderhan et al., 2006).

Significantly, the deposit lacks positive Eu anomalies, but has

pronounced negative Ce anomalies, indicating an oxygenated

state of at least the upper part of the ocean (Tsikos and Moore,
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1997). The absence of a positive Eu anomaly is also important

because it indicates that the global ocean was not dominated

by a high-temperature, hydrothermal flux at that time and that

Fe and Mn were likely derived locally, within the basin, by low-

temperature, shallow-water alteration of the underlying thick

(�1 km) sequence of volcanic rocks. Considering that the

2.22 Gamantle plume breakout event coincides with a positive

carbon isotope excursion in seawater composition, the

Lomagundi Event, related to high relative burial rates of or-

ganic carbon (e.g., Bekker et al., 2001; Karhu and Holland,

1996; Schidlowski et al., 1976), this REE pattern may indicate

that significant parts of the oceans were already oxygenated by

that time and that Fe and Mn were soluble only in isolated to

semi-isolated basins overwhelmed by a hydrothermal flux of

reductants.

Hematitic oolites and hematite-rich sandstones continued

to be deposited in shallow-marine environments during

the Lomagundi carbon isotope excursion in South Africa

(e.g., Silverton Formation; Schweigart, 1965) and on the

Kola Peninsula, Russia (Kuetsjärvi Sedimentary Formation;

Akhmedov, 1972a). IFs deposited during the Lomagundi excur-

sion are developed within the Lomagundi Group of the �2.2–

2.1 Ga Magondi belt, Zimbabwe (Master, 1991). In West Africa,

they are present in the Ijil Group, Mauritania (Bronner and

Chauvel, 1979) and the Nigerian schist belts (Mücke, 2005),

both in the 2.2–2.1 Ga Birimian basin. Iron- and manganese-

rich strata are also developed in West Africa in the Francevillian

basin, Gabon (Leclerc and Weber, 1980). Volcanic-hosted IFs

deposited during the Lomagundi carbon isotope excursion are

also known in Brazil (e.g., Aimbė Formation, Guarinos Group;

Resende and Jost, 1995; Itapicuru Complex of the Rio Itapicuru

greenstone belt; Dalton de Souza et al., 2003) and Norway

(Iddjajav’ri Group, Karasjok greenstone belt; Often, 1985). Con-

sidering uncertainty in the ages of these IFs, it is difficult to relate

them to a specific mantle plume breakout event. However,

several such events occurred between 2.2 and 2.1 Ga (Ernst

and Buchan, 2001) and thus it seems likely that the deep-

ocean redox state was too high, rather than the strength of

mantle plume events being too low, to form giant sedimentary

iron deposits during this time interval.

Following the end of the Lomagundi carbon isotope excur-

sion at 2.1–2.0 Ga, small, volcanic-hosted IFs were deposited

in several basins in North America (e.g., Homestake Iron For-

mation, Black Hills, South Dakota; Frei et al., 2008) and

Finland (Laajoki and Saikkonen, 1977; Paakola, 1971). Oolitic

hematitic ironstone is also present in the Kolasjoki Sedimen-

tary Formation, Kola Peninsula, Russia (Akhmedov, 1972b),

which was deposited during this time. Combined, these data

suggest that dynamic ocean redox conditions were re-

established in the aftermath of the GOE, characterized by

periodic upwelling of iron into shallow-water settings above

storm and wave base in association with mantle plume break-

out events. A number of mantle plume events are recognized

during this time interval, the most prominent being the

�2069–2053 Ma event that led to the emplacement of the

Bushveld Complex in South Africa, and a number of mafic to

ultramafic dikes and intrusions on the Superior and Sarmatia

cratons (Chernyshov et al., 1998; Elming et al., 2010; Ernst and

Bleeker, 2010). The absence of contemporaneous large accu-

mulations of sedimentary iron is puzzling. However,
considering that this event immediately followed the Loma-

gundi excursion, during which large amounts of oxygen were

released to the atmosphere–ocean system, it is possible that the

ocean redox state was buffered to change by a hydrothermal

flux of reductants, preventing anoxia and significant Fe trans-

port to sites favorable for IF accumulation.

9.18.7.3.6 C.1.93–1.85 Ga IFs coeval with large VMS
deposits
Extensive and large IFs reappear after an approximately 500 My

gap, at about 1.88 Ga. These are predominantly GIFs and are

most common in North America at the margins of the Superior

craton (Simonson, 2003), and in Western Australia (Goode

et al., 1983; Rasmussen et al., 2012). They are coeval with

emplacement of the �1.88 Ga ultramafic LIP (Heaman et al.,

1986, 2009; Hulbert et al., 2005) that is potentially related to a

mantle plume breakout event (Hamilton et al., 2009; see for a

different view Heaman et al., 2009) during the early stage in

the assembly of Laurentia. These IFs are now recognized to be

correlative, based on high-precision geochronology (Findlay

et al., 1995; Fralick et al., 2002; Machado et al., 1997; Schnei-

der et al., 2002; Stott et al., 2010). IFs extend discontinuously

for more than 3000 km along the southern and eastern mar-

gins of the Superior craton, from Minnesota, Wisconsin, and

Michigan, to Quebec (Mistassini basin), and northward to the

Labrador Trough. Correlative and texturally similar GIFs also

occur in the center of the Superior craton in the Hudson Bay

region (Richmond Bay and Belcher Islands) and in Sutton

Inliers, NW part of Ontario (Chandler, 1984; Hamilton et al.,

2009; Hawley, 1926; Stott et al., 2010). This group of IFs is

considered to have been deposited in extensional settings with

coeval submarine mafic volcanism (Fralick et al., 2002;

Ricketts et al., 1982; Schulz and Cannon, 2007). A back-arc

basinal setting for the IFs has been proposed by these workers,

whereas a foreland basin setting was advocated by others (e.g.,

Hoffman, 1987; Ojakangas et al., 2001; Schneider et al., 2002).

An intriguing question is whether deposition of these IFs

represents either local, basin-scale conditions or the composi-

tion and redox state of the global ocean. This is a critical issue

because occurrences and ages of these IFs have been used by

some workers to infer deep-water anoxic conditions in the

coeval global ocean (e.g., Poulton et al., 2004; Slack and

Cannon, 2009); if these IFs instead reflect more restricted,

basin-scale conditions, our understanding of the global ocean

redox state might be incorrect. Paleogeographic reconstruc-

tions are not adequately detailed to answer this question;

however, tidal signatures have been observed in IFs and inter-

bedded sedimentary rocks of this age in Minnesota and the

Hudson Bay region (Ojakangas, 1983; Chandler, 1984), which

are consistent with at least episodically open-marine condi-

tions during IF deposition. Two independent questions can

be asked as a basis to address this issue. First, do sedimentary

successions of similar age on the margins of other cratons

provide evidence for high concentrations of iron in seawater?

Second, do iron-oxide exhalites occur in association with coe-

val, deep-water (Cu-rich) VMS deposits?

The �1.88 Ga Frere Iron Formation along the northern

margin of the Yilgarn craton of Western Australia (Goode

et al., 1983; Rasmussen et al., 2012) and IF of the Gibraltar

Formation in the Kahochella Group along the southeastern
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Figure 15 Distribution of iron formations and magmatic occurrences of
the �1880 Ma Circum-Superior event on the Superior craton. CSb, Cape
Smith belt with �1870 Ma volcanics of the Chukotat Formation; SIs,
Sleeper Island sills; BI, Belcher Group; SI, Sutton Inlier with
metasediments and sills; Tb, Thompson belt; Gf, Gunflint Iron Formation
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iron formation. Red star and circle locate inferred center and 1000 km
radius of underlying mantle plume �1880 Ma. Paleoproterozoic basins
that contain 1.88 Ga iron formation and volcanics are shown in green,
those that contain only iron formation are in red, and those that contain
only volcanic units of this age as well as dikes and sills of this age in the
interior of the craton are shown in black. Modified from Ernst RE and
Bell K (2010) Large igneous provinces (LIPs) and carbonatites.
Mineralogy and Petrology 98: 55–76.
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margin of the Slave craton in North America (Bowring et al.,

1984; Hoffman et al., 2011; Roscoe et al., 1987) are granular

and likely equivalent in age to the Animikie IFs. In addition,

the presence of the �1.88 Ga Rochford Formation along the

eastern margin of the Wyoming craton, although poorly dated

and not granular (Frei et al., 2008), supports synchronous

deposition of IFs on several cratons. On the other hand,

a �20-m-thick magnetite–hematite oolitic iron formation in

the middle member of the Watterson Formation (Hurwitz

Group) on the Hearne craton of Canada (Miller and Reading,

1993) is most likely older than the 1.88 Ga IFs on the margins

of the Superior craton. The age of this oolitic unit is not well

constrained, but detrital zircon geochronology for several units

within the Hurwitz Group, including the Watterson Forma-

tion, suggests that it is �1.93 Ga (Davis et al., 2005). In con-

trast, the precisely dated (1882�3.5 Ma) lower part of the

Recluse Group in the Kilohigok basin on the Slave craton,

northwestern Canada, lacks IF (Bowring and Grotzinger,

1992). Instead, organic matter-rich and sulfidic shales are pre-

sent at this stratigraphic level (Bowring and Grotzinger, 1992).

Iron speciation and sulfur isotope systematics of these shales

might help constrain the local redox state. However, coeval

euxinic and ferruginous conditions are expected when there is

an anoxic deep ocean (e.g., Planavsky et al., 2011; Reinhard

et al., 2009).

Deposition of IFs on the Superior craton was synchronous

with a peak in tonnages of VMS deposits (Figure 14), some of

which were generated in arcs adjacent to the craton. VMS de-

posits of this age are known in the hinterland to the south of the

Animikie basin (Schulz and Cannon, 2007), in the Labrador

Trough (Barrett et al., 1988), and in the Trans-Hudson orogen

(Syme and Bailes, 1993). Recent geochronological studies of the

host metavolcanic rocks to VMS deposits in the Pembine-

Wausau terrane of northern Wisconsin indicate that these de-

posits formed at �1875 Ma, contemporaneously with GIF of

the Animikie basin (Schulz and Cannon, 2008). These data also

suggest that the hydrothermal systems were the source of iron

for the IFs, consistent with earlier models (e.g., Isley, 1995).

However, laterally continuous iron-oxide exhalites are absent

at or near these deep-water VMS deposits that formed presum-

ably in open-marine conditions. This observation is unlikely to

reflect preservational bias, because slightly younger 1.84, 1.79,

and 1.78 Ga Cu-rich VMS deposits that similarly formed in arc

settings contain abundant hematite and magnetite exhalites,

jasper, and IF (Slack and Cannon, 2009; Slack et al., 2007).

This analysis points toward an anoxic and ferruginous compo-

sition of deep waters in open-marine settings at�1.93–1.88 Ga.

The Animikie basin of the Lake Superior region contains

another stratigraphic level with regionally extensive IFs. This

level is stratigraphically above the 1850 Ma Sudbury impact

ejecta layer and is older than the�1830 Ma regional metamor-

phic event related to the Penokean orogeny (Cannon et al.,

2010). These IFs are mineralogically and texturally different

from the �1880 Ma IFs of the Animikie basin, and were likely

deposited in deeper waters, below fair-weather and, probably,

storm-wave base. They are present in the: (1) Marquette Iron

Range, Michigan (�60-m-thick Bijiki Iron Formation Member

of the Michigamme Slate containing siderite, chert, iron

oxides and silicates; Cannon et al., 2010; Ojakangas, 1994;

Ojakangas et al., 2001), (2) Iron River-Crystal Falls Iron Ranges
(�15-m-thick chert–siderite slate of the Stambaugh Forma-

tion; James et al., 1968), (3) Gogebic Iron Range, Wisconsin

(�47-m-thick IF of the Tyler Formation consisting of chert and

siderite; Cannon et al., 2008; Schmidt, 1980), and (4) Mesabi

Iron Range, Minnesota (�27-m-thick chert–siderite IF in the

lower part of the Virginia Formation; Lucente and Morey,

1983). Deposition of these IFs might be genetically linked

with submarine mafic volcanism in the Animikie basin based

on spatial association with, for example, the Badwater Green-

stone, but this relationship has not been documented in detail.

The IFs commonly are interbedded with, or overlain by, black

sulfidic shales, which likely record the development of euxinic

conditions in the basin (cf. Poulton et al., 2004). Despite poor

exposure, these iron deposits are easily traceable by magnetic

anomalies. Their deposition indicates that anoxic and ferru-

ginous seawater redox conditions were re-established in the

Animikie basin after 1850 Ma, in association with mafic volca-

nism, although evidence for a shallow redoxcline in this case is

absent and duration of these conditions was likely short and

the extent of iron deposition probably was limited.

Thinly banded, silicate-facies IF of similar age, or slightly

older, is present in the Pipe Formation of the Thompson nickel

belt, Manitoba (Bleeker and Macek, 1996). However, GIFs

are absent along the western and northern margins of the

Superior craton, whereas they are developed continuously

along the eastern and southern margins. Considering the

Figure&nbsp;15
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occurrence of similar facies IFs in the Hudson Bay area and

Sutton Inliers, it is plausible that a significant part of the

Superior craton was submerged and sloped to the south during

deposition of the Animikie IFs, due to uplift caused by the

mantle plume then centered on the northwestern corner of

the Superior craton (cf. Ernst and Bell, 2010). In this interpre-

tation, IFs in the Sutton Inliers and the Hudson Bay area repre-

sent thin, shallow-water facies of the intracratonic basin

extending to the southern and eastern margins of the Superior

craton (Figure 15).

A key unresolved question is why the�1.88 Gamagmatism

led to extensive deposition of IFs on several continents given

that the long time intervals preceding and following this event

had minimal IF deposition despite being similarly affected by

mantle plume activity. In terms of simple mass balance, it

might be that the flux of hydrothermally derived reductants

(e.g., Fe, H2S, and H2) at 1.88 Ga was capable of overwhelming

the redox state of the ambient deep ocean. Therefore, the

volume of magma and the rate at which it was added bymantle

plumes to the oceanic realm at this time could be a critical

factor. If so, the question can be rephrased: what processes

were responsible for generating the unique strength of the

�1.88 Ga mantle plume event? We emphasize here that this

event corresponds with the early stage in supercontinent as-

sembly, a topic discussed in more detail below.
9.18.7.3.7 Proterozoic age gap in major IF deposition
It is generally assumed that after �1.85 Ga, major sediment-

hosted IFs were not deposited for approximately 1.1 Gy (Huston

and Logan, 2004; Isley and Abbott, 1999; Klein, 2005; Slack and

Cannon, 2009). This distinctive pattern in the secular trend for

IFs has been explained by a change in the deep ocean redox state

from anoxic to oxygenated (Holland, 1984) or sulfidic

(Canfield, 1998) conditions. In contrast, it has been recently

proposed that the deep ocean was anoxic but not sulfidic

(Planavsky et al., 2011; Poulton et al., 2010), or suboxic (Slack

et al., 2007, 2009). The earlier suggestion by Holland (1984) for

oxygenated deep-ocean conditions after�1.88 Ga has fallen out

of favor, but (arguably) the model has not been ruled out. An

alternative model, suggesting that deep-ocean conditions were

predominantly sulfidic over �1.1 Ga of the Middle Proterozoic

history (e.g., Canfield, 1998; Poulton et al., 2004), also has lost

favor recently because practically all evidence for this model can

be satisfied with locally developed euxinic conditions on conti-

nental shelves and in intracratonic basins (e.g., Planavsky et al.,

2011; Scott et al., 2008; Slack et al., 2007). The emerging con-

sensus is that the redox state of the deep ocean was variable over

the time interval of �1.85–0.75 Ga, but distinctly more reduc-

ing than that characteristic of the Phanerozoic (Planavsky et al.,

2011; Poulton et al., 2010; Slack et al., 2007). The terms ‘ferru-

ginous’ and ‘suboxic’ are not ideal for defining the redox state of

the deep ocean during this period since the first was widely used

for the Archean and the second has been used in different ways

for modern and ancient conditions (Canfield and Thamdrup,

2009). More importantly, higher hydrothermal fluxes of metals,

including Fe and Mn, should be expected if the oceans were at a

low oxidation state and had a higher content of dissolved or-

ganic carbon (cf., Rothman et al., 2003) to effectively ligate

metals.
The record of this hydrothermal flux might be found in Fe

and base metal contents of mid-Proterozoic shales and in their

isotope signatures. Poulton et al. (2010) argued that euxinic

shales deposited on continental margins (possibly in areas

corresponding to modern oxygen-minimum zones) and in

intracratonic basins could have been a major sink for the

hydrothermal iron flux to the Middle Proterozoic oceans, and

were thus responsible for the absence or scarcity of Middle

Proterozoic IFs. At present, this suggestion has not yet been

quantitatively evaluated, but it would require a higher total Fe

content in average shale during this time interval. Data in

Kump and Holland (1992) do show that the average Protero-

zoic shale has more Fe than the average Phanerozoic shale but

less than the average Archean shale. Considering that giant IFs

were also deposited during the Archean, this trend in iron

content of average shale seems to suggest that other factors

besides the presence of marginal euxinia controlled the abun-

dance of IFs in the Middle Proterozoic. It has also been pro-

posed that a rise in seawater sulfate level after �1.88 Ga led to

a decrease in the flux of the hydrothermal iron – shutting off

the deposition of major IF (Kump and Seyfried, 2005). How-

ever, seawater sulfate levels decreased rather than increased in

the Middle Proterozoic after the �2.22–2.1 Ga Lomagundi car-

bon isotope excursion (Bekker and Holland, 2012), thus chal-

lenging this model.

Although large sedimentary IFs during the Middle Protero-

zoic (1.85–0.75 Ga) are indeed absent, several small IFs and

iron-rich lithologies in sedimentary rock-dominated succes-

sions are knownoutside of the Animikie basin (seeAppendix 1).

Magnetite and siderite IFs of the Aok Formation in the Neopro-

terozoic Shaler Supergroup in the Duke of York and Brock

Inliers of Victoria Island, northern Canada, were deposited at

�840 Ma before the onset of the oldest Neoproterozoic glacial

events (Rainbird et al., 1994; Young, 1981). Older examples

within this age range include the�1.70 Ga Freedom Formation

of the Lower Baraboo Series, Wisconsin, which contains in the

lower part banded ferruginous chert interlayered with sideritic

and kaolinitic slate 60–160 m thick (Leith, 1935; Van Wyck and

Norman, 2004; Weidman, 1904) and the likely correlative

magnetite–chert IF of the Tomiko terrane in Ontario (Easton,

2005). Additionally, the Chuanlinggou IF on the North China

craton, a classic GIF deposit, also appears to be latest Paleopro-

terozoic in age (�1.7 Ga; Dai et al., 2004; Wan et al., 2003).

Noteworthy examples of small iron deposits that formed

during this time gap in shallow-water settings occur in north-

ern Australia in the Sherwin Formation and theMunyi Member

of the Corcoran Formation, both within the�1.49 GaMaiwok

Subgroup of the Roper basin, Northern Territory (Abbott and

Sweet, 2000; Canavan, 1965) and the correlative Constance

Range ironstone of the Train Range Member of the Mullera

Formation in the South Nicholson basin, Queensland (Harms,

1965; Jackson et al., 1999). These iron-rich units consist of

oolitic, pisolitic, and peloidal, trough cross-stratified ironstone

and ferruginous siliciclastic rocks as much as 23 m thick

(Abbott and Sweet, 2000; Harms, 1965). Unweathered sam-

ples show grapestones and ooids as much as 8 mm in diameter

(Figure 5(b)) composed of hematite and magnetite with

nuclei of quartz or oolitic intraclasts; chamosite and greenalite

are present locally in a secondary siderite matrix (Abbott and

Sweet, 2000). Beds within the ironstone units are bounded by
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erosional surfaces with sharp compositional contrast between

ooidal ironstones and overlying quartz-rich sandstones. The

presence of intraclasts and peloids of iron-rich sediment in

quartz-rich sandstone and clasts of ironstone within intrafor-

mational conglomerate (Figure 5(b)) strongly suggests that the

sediments were originally iron-rich. Many ironstone intraclasts

have a pisolitic coating, testifying to the primary deposition of

iron oxyhydroxides in the sedimentary environment. The

ooids and peloids likely formed at the redox boundary be-

tween shallow, oxidized and deep, anoxic waters. Notably,

the Sherwin Formation and Munyi Member of the Corcoran

Formation enclose black shales of the Velkerri Formation that

were used previously to infer a long-term sulfidic state of the

coeval deep ocean, based on sulfur isotope composition, iron

speciation, and molybdenum isotope composition (Arnold

et al., 2004; Shen et al., 2003). Leaving aside arguments

whether available geochemical and geological evidence for

the ocean redox state during the Mesoproterozoic is consistent

with a pervasively euxinic deep ocean (e.g., Meyer and Kump,

2008; Poulton et al., 2010; Slack et al., 2007, 2009), this

intricate relationship between ironstones and euxinic black

shales strongly suggests that ferruginous and euxinic condi-

tions alternated in the Mesoproterozoic intracratonic Roper

and South Nicholson basins on geologically short timescales.

Oolitic ironstones are also developed in the �1.38 Ga Xia-

maling Formation of the Xiahuayuan region in Hebei Province

of North China (Su et al., 2010) and in the poorly dated, late

Neoproterozoic (but preglacial) Nizhne–Angara Formation of

the Angara-Pit area, Siberia, Russia. IFs deposited at �1490,

1368, and 767 Ma (see Appendix 1) broadly – within analyt-

ical error – correspond with ages for emplacement of LIPs

at �1460, 1380, and either 780 or 755 Ma (Ernst et al.,

2008). Poor age constraints presently available for other IFs

deposited during this time interval make it difficult to test their

possible relationship with mantle plume events.

In addition to shallow-water, sediment-hosted IFs, numer-

ous shallow-water exhalites are associated with sedimentary

exhalative (SEDEX) and VMS deposits that formed during the

late Paleoproterozoic and Mesoproterozoic. These deposits con-

tain jasper, hematite, and magnetite layers having positive Eu

and negative Ce anomalies (e.g., Hatton and Davidson, 2004;

Lottermoser, 1989; Lottermoser and Ashley, 1996; Strydom

et al., 1987). Although these VMS and exhalite deposits com-

monly formed within isolated to semi-isolated basins and thus

should not be used to infer the redox state of the coeval deep

ocean, they do provide strong evidence that shallow-water set-

tings were oxygenated at that time. In contrast, mineralogical

and geochemical data for deep-water, open-marine exhalites

provide strong evidence for a low-oxygen (suboxic) state of the

deep ocean during their deposition (Slack et al., 2007, 2009).

Interestingly and surprisingly, large Mn deposits are absent dur-

ing this time period with the single exception of the �1.44 Ga

Wafangzi Mn deposit in NE China (Maynard, 2010; Su et al.,

2010). This trend, if real, suggests that a strong oxic sink for Mn

might not exist during this time period in the oceans.

Even though IFs of this age range are of minor economic

importance, their existence suggests that from �1.85 to

0.75 Ga hydrothermal iron from deep-water oceanic settings

was episodically delivered, although in rare cases and in gen-

erally small amounts, to shallow-water environments for the
deposition of IF, ironstone, and iron-rich shale. In addition,

within isolated to semi-isolated basins having strong volcanic

and hydrothermal activity, the flux of reductants was strong

enough to locally overwhelm the water-column redox state,

thus leading to iron transport on a local scale. Open-marine,

deep-water environments were in general sufficiently oxidized

for iron to precipitate from hydrothermal plumes as iron oxy-

hydroxide. Combined, this record of the iron cycle is very

similar to that in the Phanerozoic. Although it does not pro-

vide rigorous quantitative constraints on the deep-ocean redox

state, the record challenges models for persistently oxic, fully

anoxic, or sulfidic conditions within open-marine, deep-water

settings. In summary, a low and yet variable redox state of the

deep ocean is most consistent with this record.

9.18.7.3.8 Neoproterozoic manganese deposits and IFs
Manganese deposits and IFs of Neoproterozoic age are exten-

sively but discontinuously developed in association with gla-

cial deposits. In addition, iron-rich shales are relatively

common in contemporaneous, glacially influenced succes-

sions (e.g., Young, 2002). The latter relationship was re-

emphasized by Canfield et al. (2008) to infer a return during

the late Neoproterozoic to Archean-style anoxic, ferruginous

ocean conditions. Significant iron and manganese accumula-

tions in association with glacial deposits are present in a num-

ber of Neoproterozoic successions worldwide, although for

other Neoproterozoic IFs a clear stratigraphic or temporal re-

lationship with ice ages has not been established (e.g., Cabral

et al., 2011; see also Appendix 1).

Presently available geochronological constraints and strati-

graphic correlations imply that IFs are at least temporally re-

lated to the Sturtian (�715 Ma) and Marinoan (�635 Ma)

glaciations, although some uncertainty exists regarding a num-

ber of Neoproterozoic glacial events, their ages and duration,

and chemostratigraphically based correlations (e.g., Kendall

et al., 2009). The Rapitan IF and Franklin igneous event on

Victoria Island in Canada are both �715 Ma (Heaman et al.,

1992; Macdonald et al., 2010), supporting a genetic relation-

ship among volcanism, mantle processes, and deposition of IF

at least on the basin scale. Neoproterozoic IFs are typically

enriched in Mn and P and have high Co, Ni, and Cu contents

(Halverson et al., 2011; Klein and Beukes, 1993; Planavsky

et al., 2010a,b; see also Chapter 9.11). Highly positive sulfur

isotope values in shales and manganese formations overlying

Neoproterozoic glacial diamictites have been related to Ray-

leigh distillation in low-sulfate oceans, which were highly sus-

ceptible to the development of anoxic ferruginous conditions

and hydrothermal delivery of iron and manganese into shal-

low basins during mantle plume breakout events (Liu et al.,

2006). Importantly, IFs were deposited during deglaciation as

indicated by the presence of dropstones in IFs and interlayering

with tillites. Poor age constraints for other Neoproterozoic IFs

do not warrant correlation with Neoproterozoic mantle plume

events, although several such events occurred during the late

Neoproterozoic (e.g., Ernst and Buchan, 2001). However, al-

most all Neoproterozoic IFs are spatially and temporally linked

with submarine mafic and felsic volcanic units. Some basins

hosting IFs of this age also contain coeval VMS deposits (e.g.,

Buhn et al., 1992; Cabral et al., 2011), suggesting a proximal

hydrothermal source of metals. Most of these IFs were
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Figure 16 Rapitan Iron Formation at Cranswick River, Mackenzie Mountains, Northwestern Territories, Canada. (a) Nodular and banded jasper
interlayered with hematite bands and overprinted by anastomosing hematite. (b) Jasper nodules and lenses in massive hematite. (c) Banded jasper–
hematite iron formation with dropstone overprinted by anastomosing hematite. (d) Jasper nodules and lenses in massive hematite. Photographs are
courtesy of E. Turner.
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deposited either in closed rift basins or on reactivated conti-

nental margins (e.g., Trompette et al., 1998).

Neoproterozoic IFs generally comprise laminated and nod-

ular hematite, massive magnetite, hematitic mudstone, and

jasper (Figure 16). Lenticular and nodular chert and jasper

are less common, but are present within laminated jasper

beds (Yeo, 1981). Banded cherts, similar to those in Archean

and Paleoproterozoic IFs, are absent. Furthermore, the thick-

ness of Neoproterozoic IFs is highly variable over relatively

short distances. GIFs and intraformational conglomerates con-

taining hematite pebbles developed locally at the top of the

Rapitan Iron Formation and in the Jacadigo Group, Brazil, but

coated grains are uncommon (Klein and Beukes, 1993a; Klein

and Ladeira, 2004). REE patterns for Neoproterozoic IFs have

either no or slightly positive Eu anomalies, and either no or

slightly negative Ce anomalies (Derry and Jacobsen, 1990;

Fryer, 1977; Halverson et al., 2011; Klein and Beukes, 1993a;

Klein and Ladeira, 2004; Liu et al., 2006; Lottermoser and

Ashley, 2000), likely indicating a high degree of dilution

of locally derived, hydrothermal fluid by mildly oxidized sea-

water. Models that are generally accepted for Phanerozoic

manganese deposits (see Chapter 9.11) are probably also

applicable to the origin of Neoproterozoic IFs. These models

infer anoxic conditions with enhanced submarine volcanism

in the deeper parts of isolated to semi-isolated basins and

manganese precipitation occurring at the redox boundary on
the shallow margins of the basins. Another factor, in addition

to mantle plume events and tectonics, which could have con-

tributed to deposition of IF, is dramatic sea-level fall during ice

ages. Sea-level fall would decrease the overlying hydrostatic

pressure and shift equilibrium in the seafloor hydrothermal

systems toward higher Fe/H2S ratios, thus promoting larger Fe

fluxes into the oceans (Kump and Seyfried, 2005). In sum,

although the occurrence of Neoproterozoic IFs supports long

durations of glaciations and the existence of redox-stratified

basins, they do not require extreme snowball Earth conditions

in order to form.

9.18.7.3.9 Phanerozoic ironstones, anoxic events, and
VMS deposits
The most prominent peaks in deposition of Phanerozoic

ironstones occur in the Ordovician–Devonian and Jurassic–

Paleogene (Figure 17). The ironstones generally are only several

meters thick, rarely reach 25 m in thickness, and extend for over

1000 km along ancient continental margins in Fennoscandia

and theHimalayas where they demarcate areas of past upwelling

(e.g., Garzanti, 1993; Sturesson, 2003). The ironstones are com-

posed largely of iron oxide ooids (goethite and limonite), with

smaller amounts of Fe-silicates (chamosite, berthierite, and glau-

conite) and Fe-carbonates (siderite), typically as cements. In

contrast to most Proterozoic IFs and early Paleozoic hydrother-

mal deposits, ironstones have very little chert, but commonly are

Figure&nbsp;16


N
um

b
er

 o
f d

ep
os

its

Age (Ma)

400600 200 0500 300 100

0

10

20

30

40

50

60 Oolitic marine
ironstones

VMS
Cu–Zn(–Pb–Ag–Au)
deposits

0
   

A
no

xi
c

co
nd

iti
on

s
N

um
b

er
 o

f d
ep

os
its

Black shales

Cam Ord Sil Dev Carb Perm Trias Juras Cret Cen

60

30

90

15

45

75

Sedimentary
Mn deposits

N
um

b
er

 o
f d

ep
os

its

0

2

4

6

8

10

12

Figure 17 Secular distribution of Phanerozoic oolitic marine ironstones (from Petranek and Van Houten, 1997) compared to those of marine anoxic
conditions and VMS deposits (from Bekker et al., 2010) and a number of sedimentary Mn deposits (from Maynard, 2010). Data for VMS deposits
and for sedimentary Mn deposits are compiled for time intervals of 25 Ma. Marine anoxic conditions are shown for inferred global periods of anoxia by
black bars and more limited periods of anoxia by gray bars; the latter reflecting less-widespread, regional black shale facies. Data for anoxic
conditions during Cambrian through Jurassic periods are from Arthur and Sageman (1994), for Cretaceous from Leckie et al. (2002), and for Cenozoic
from Jacobs and Lindberg (1998).
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enriched in manganese and phosphorus. However, in some

cases, ironstones are associated with chert deposits (Borchert,

1965; Franceschelli et al., 2000; Glenn and Arthur, 1990).

Many ironstone deposits contain stilpnomelane, volcanic glass

shards, and other tuffaceous material implying contempora-

neous volcanism. Typically, bulk analyses of oolitic ironstone,

when normalized to shale composites or local shale, haveminor

negative to positive Ce anomalies, are enriched in light REE

with respect to heavy REE, and lack significant Eu anomalies

(e.g., Bhattacharyya and Crerar, 1993; Sturesson, 2003).

Ironstones are common to time intervals characterized by

negative seawater Sr isotope excursions (Sturesson, 2003),
peaks in the formation of VMS deposits (cf. Franklin et al.,

2005; Peter, 2003), large volcanic- and sediment-hosted Mn

deposits (Maynard, 2010), extensive ocean anoxia, green-

house conditions, volcanic events, emplacement of LIPs,

and quiescence in Earth’s magnetic field (e.g., Garzanti,

1993; Sturesson, 2003; Van Houten and Arthur, 1989). Iron-

stones are typically thought to have been deposited during

periods with low sedimentation rates at the beginning of a

sea-level rise, as suggested by their position in Transgressive

System Tracts (Figure 6(b); Burkhalter, 1995; Maynard and

Van Houten, 1992; Taylor et al., 2002) and commonly are

topped by hardgrounds, thought to represent the maximum

Figure&nbsp;17
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flooding surface. They are also common to upwelling areas

where phosphates were deposited. Collectively, these diverse

associations have been linked with mantle superplume events

(e.g., Garzanti, 1993). Furthermore, ironstones are related to

time periods when seawater was saturated with calcite, rather

than with aragonite or high-Mg calcite, and when the so-

called ‘calcite seas’ developed, which correspond with times

of rapid seafloor spreading and high rates of Mg removal from

seawater (Maynard, 1986; Stanley and Hardie, 1998). The

formation of berthierite and siderite in shallow, well-agitated

marine environments requires weakly reducing but non-

sulfidic conditions in the water column and sediment pore

waters. However, berthierite and hematite ooids co-occur in

ironstones, even forming discrete laminae within individual

ooids, thus indicating fluctuating redox conditions during

either deposition or early diagenesis, but prior to compaction.

In addition, glauconite, an abundant sedimentary alumino-

silicate mineral with Fe(III) substituting for Al(III) and lower

Eh requirements for precipitation than berthierite, is virtually

absent in oolitic ironstones (Maynard, 1986) and does not

co-exist with chamosite but occurs in deeper-water facies

equivalents (e.g., green shales; Hunter, 1970). Where sedi-

mentary facies analysis has been performed, the following

sequence of facies and mineralogical changes from shallow,

oxidized waters to deep, reduced waters is evident: hematitic

oolitic ironstone; chamositic oolitic ironstone; glauconitic,

illitic, and chloritic green shales; and, finally, organic

matter-rich, sulfidic shales.

The genesis of Phanerozoic ironstones and the iron source

for these deposits remains controversial. Extreme degrees of

weathering on peneplained continents linked with high sea-

level stands during dispersion of supercontinents are com-

monly inferred (e.g., Van Houten and Arthur, 1989). However,

neither sea-level highstand nor supercontinent dispersal seems

to be a prerequisite for the deposition of Phanerozoic iron-

stones (Van Houten, 1985). Furthermore, because iron is

highly insoluble in the presence of even traces of dissolved

oxygen, this model implies that iron was delivered from the

continents in solution with slightly acidic river waters or

groundwaters, in colloidal form, or complexed with organic

ligands, and the iron was precipitated in deltas or along shore-

lines on mixing with seawater having higher pH and ionic

strength (Castano and Garrels, 1950; Huber and Garrels,

1953). However, considering the fast rate of iron precipitation

on mixing with seawater, a corollary of this model is that

ironstone deposition should be centered on a point source as

commonly found in subterranean estuaries showing a well-

defined ‘iron curtain’ near the sediment–seawater interface

(Charette and Sholkovitz, 2002; Rouxel et al., 2008a,b), rather

than along the full extent of the shoreline with little variation

in thickness. An alternative model relates ironstones to subma-

rine weathering of volcanic ash (e.g., Sturesson, 2003), even

though many ironstone-bearing units lack volcanic ash beds.

Reworking of pedogenic ferruginous pisoids into the marine

environment has also been suggested, but it does not explain

their restricted stratigraphic position, global secular trend, low

Al content in goethitic and hematitic oolites (e.g., Maynard,

1986), or eNd(t) values above those of proximal crustal sources

(Sturesson et al., 1999), indicating some contribution to REE

budget from juvenile sources.
Aller et al. (1986) developed a model of an early diagenetic

iron source from anoxic sediments into the water column as

originally advocated by Borchert (1965). Aller et al. (1986)

proposed a model for ironstone deposition based on modern

Amazon deltaic sediments in which high amounts of organic

matter loading, anoxia at the sediment–water interface, and

intense physical reworking promote the re-oxidation of pore-

water iron. These processes in the Amazon River allow for

significant burial rates of reactive iron phases, such as ferric

and mixed-valence authigenic iron minerals, despite the pres-

ence of abundant dissolved sulfate (Aller et al., 1986). The

model is consistent with the depositional setting of ironstones,

although it does not explain their episodic secular distribution

or much more pronounced iron enrichments relative to mod-

ern Amazonian deltaic sediments. Nonsteady diagenetic rework-

ing of preexisting metal-enriched (anoxic) shales is a potential

mechanism for ironstone deposition that has not been explored

in any detail, but would provide an explanation for the close

association of ironstones with periods of marine anoxia.

Cotter and Link (1993) were among the first workers to

suggest that iron was supplied from deep-water, anoxic set-

tings. Broad correspondence of the secular distribution of

Phanerozoic ironstones with that of VMS and volcanic- and

sediment-hosted Mn deposits (Figure 17) offers additional

insight into ironstone deposition and suggests that the iron

originated in coeval seafloor-hydrothermal systems. Along

these lines, we suggest that deposition of major Phanerozoic

ironstones is mechanistically linked to times of global ocean

anoxia during mantle superplume events. Enhanced volcanic

and hydrothermal activity led to extensive formation of VMS

deposits, higher sea level, and contributed to short-term,

ocean-wide anoxia. Under anoxic conditions, hydrothermal

and diagenetic iron could have been transported by upwelling

currents, together with phosphorus and manganese, onto the

shelf where the iron was oxidized biologically or abiologically

at a shallow-water dynamic redoxcline. Cretaceous anoxic

events also have been genetically linked to extensive submarine

magmatism based on geochemical evidence (Turgeon and

Creaser, 2008) and geological arguments (Kerr, 1998; Sinton

and Duncan, 1997). The model implies that even if sulfidic

conditions persisted throughout the oceans, more hydro-

thermal iron than in the modern ocean was transported from

the deep ocean, as either ligand bound or nanoparticulate

phases. However, even under widespread anoxic conditions,

sulfide formation in the deep oceans could have been limited

by organic matter availability. Anoxic conditions with low

sulfide levels could have allowed for transport of dissolved

iron onto the continental shelves. This model is supported by

iron isotope data that point toward hydrothermal iron delivery

onto the portions of the upper slope in the Atlantic Ocean

during Cretaceous OAE 2A (Owens et al., 2012).
9.18.8 Controls on IF Deposition

The above discussion allows us to discriminate the major

controls on IF deposition. Although in some cases it is difficult

to resolve whether an IF was deposited proximally or distally to

submarine volcanism, IFs hosted in volcanic-dominated suc-

cessions are in general more common during Earth’s early



Figure 18 Hypothetical relationship during the early stage of
supercontinent assembly between supercontinent amalgamation leading
to external ocean closure and changes in the heat budget of the mantle,
leading to mantle overturn, superplume events, and, eventually, the
development of a new mantle convection pattern. See text for discussion.
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history (>2.5 Ga) and probably reflect a higher mantle heat

flux. As time progressed, relatively small sediment-hosted IFs

appeared (or were preserved) in the geologic record starting

around 3.2 Ga, but did not reach significant thickness and

extent until 2.6 Ga. An intriguing cause-and-effect relationship

underlies fundamental environmental changes between 2.5

and 2.3 Ga including emplacement of the first true LIP,

a peak in the deposition of distal, sediment-hosted IFs, atmo-

spheric oxidation, and Paleoproterozoic glaciations. The re-

sponse of the biosphere to the superplume event may have

led to changes in surface environments. Following atmospheric

oxidation at �2.4 Ga, iron and manganese deposition was

localized in basins characterized by restricted circulation and

intense submarine volcanism.

The later peak in IF deposition at�1.88 Ga was also closely

linked in time with a significant mantle plume breakout event

that affected the Superior craton, among others. We infer that

at least on the scale of basins that surrounded the Superior and

Yilgarn cratons, the redox state and sulfate content of seawater

were sufficiently low that the hydrothermal flux of iron and

other reductants (e.g., Mn, H2S, and H2) overwhelmed the

oxidizing potential of seawater. It is likely that very low marine

sulfate concentrations at this time, similar to those during

the Archean, would have increased the iron/sulfide ratio in

emanating hydrothermal fluids, which also would have pro-

moted iron-replete conditions in the ocean (Kump and

Seyfried, 2005) and deposition of major IFs at the dynamic

redoxcline in shallow waters (Planavsky et al., 2009). High

atmospheric pCO2 and, consequently, surface temperatures

during the mantle plume breakout event could have led to

stagnant circulation and the decreased solubility of dissolved

oxygen in surface waters, resulting in anoxic conditions within

these basins, if not in the global ocean. In addition, mantle

plume breakout events generate higher sea level (Condie et al.,

2001), leading again to sluggish ocean circulation promoting

anoxia on a basin to global scale.

Our analysis agrees with previous studies (e.g., Isley and

Abbott, 1999) that the deposition of giant IFs corresponded

closely in time with major mantle plume events. Therefore,

rather than linking the termination of deposition of large,

economic IFs at �1.85 Ga and the expansion of sulfidic con-

ditions to changes in surface conditions (e.g., Poulton et al.,

2004), we propose that these secular changes, at least in the

Animikie basin, were a consequence of several contemporane-

ous processes but foremost the waning of a mantle plume

event and a decrease in the hydrothermal iron flux.

Recurrent associations in the Precambrian between super-

plume events and IF deposition have been known for some

time (Barley et al., 2005; Condie et al., 2001; Isley, 1995).

Recently, their secular relationship in the Precambrian and Phan-

erozoic with VMS deposits was also established (Bekker et al.,

2010). The link is obvious: hydrothermal systems were more

extensive, vigorous, reducing, and metal-rich during LIP empl-

acement. As a result, larger volumes of metals were leached from

submarine volcanic rocks and vented to the ocean floor, where

massive sulfide deposits formed; consequently, ocean redox state

was lowered by an enhanced flux of hydrothermally derived

reductants and Fe with Mn were delivered by plumes to

shallow-water settings where they precipitated, forming iron-

and manganese-rich sediments. Peaks in the tonnage of VMS
deposits are typically associated with time intervals when super-

continents were assembled, because VMS mineralization hosted

by bimodal volcanic rocks in back-arc basins has a high preser-

vation potential in the rock record. Considering that mantle

plumes are relatively common throughout Earth’s history, it

remains uncertain why superplumes and associated peaks in

diverse mineral deposits are genetically linked with the early

stages in the supercontinent assembly. The association is, how-

ever, striking and repetitive at �2.74–2.69, 2.5–2.45, 2.05–2.06,

1.88, 1.1, and 0.5 Ga when the Kenorland, Vaalbara, Nuna,

Zimvaalbara-São Francisco, Rodinia, and Gondwana supercon-

tinents were assembled, respectively (cf. Huston et al., 2010). It is

proposed herein that external ocean closure during the early

stage of supercontinent amalgamation dramatically changed

the heat budget of the mantle, leading to mantle overturn, super-

plume events, and eventually the development of a new mantle

convection pattern (Figure 18). As a result, superplume-initiated

rifting at the time of external ocean contraction allows plate

tectonics to persist without interruption in the aftermath of the

supercontinent assembly.

Whereas Fe–Si compounds, the likely protolith for pre-GOE

IFs, formed predominantly in the deeper parts of basins

and were widely redistributed by density currents, post-GOE

IFs record the upwelling and oxidation of ferrous iron, precip-

itation on the shelf and, later, transport by storm events and

wave currents back into the basin. GIF first appeared at

�2.6 Ga or earlier, but their predominant mineralogy was

not iron oxides until shortly after the GOE.

Whereas VMS deposits show a peak in global tonnage

at �1.88 Ga, coeval with the peak in deposition of GIF, VMS

deposits are puzzlingly absent during the 2.50–2.45 Ga mantle

plume event when large tonnages of IF accumulated (Figure 14).

Potentially, long-term global tectonic processes played a role.

The hydrothermal flux of iron likely was derived predomi-

nantly from mid-ocean ridges at that time and corresponding

Figure&nbsp;18
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VMS deposits that formed in this setting were likely recycled to

the mantle. Differences between IFs deposited before and after

the GOE, in terms of original textures and depositional set-

tings, imply potentially different mechanisms for iron precip-

itation. Similarly, assembly of the supercontinent Rodinia at

�1.2–1.1 Ga, corresponding with a small peak in VMS ton-

nage and a massive mantle plume event that affected North

America, southern Africa, and western and central Australia

(Ernst et al., 2008), is not reflected in the record of IFs. Open-

marine, sedimentary successions of this age are rare, which

could at least partially explain the lack of IFs of this age in

the rock record. As stressed above, the development of a more

sulfate-rich ocean with respect to that during the Archean and

early Paleoproterozoic would have lowered iron/sulfide ratios

in hydrothermal fluids (Kump and Seyfried, 2005), decreasing

the potential for deposition of massive iron deposits.

Reasons for the 1.1 Gy gap in the deposition of large IFs in

the Proterozoic remain uncertain. Although we note several

exceptions to this IF hiatus, these are small units that predom-

inantly occur within restricted basins. If the temporary cessa-

tion of plate tectonics (cf., Silver and Behn, 2008) was

responsible for the gap, why did major mantle plume events

and, more importantly, VMS deposits formed during this time

period (Figure 14)? Mantle plume events do not necessarily

require plate tectonic processes, but VMS mineralization does

need a submarine heat source in an oceanic environment, or at

least marine basins that developed on rifted continental or

oceanic crust (e.g., Franklin et al., 2005; Huston et al., 2010).

The secular distribution of IFs clearly deserves more atten-

tion. Although precise geochronology has been very successful

in dating Precambrian successions, including host strata to IFs

and VMS ores, some major economic iron deposits are still

poorly dated; knowing their ages might critically influence our

understanding of past oceanic and atmospheric redox states, as

well as large-scale evolution of the Earth system. Among these

poorly dated deposits (Appendix 1) critically in need of high-

precision geochronology, are Paleoproterozoic examples in-

cluding Krivoy Rog in Ukraine, the KMA in Russia, and the

Cauê Iron Formation in Brazil; a number of Mesoproterozoic

and Neoproterozoic IFs in Russia, China, and Australia; and

Archean IFs in India.

Neoproterozoic IFs are interbedded with glacial deposits,

but it is unlikely that snowball Earth conditions alone led to

their deposition. Long-term ice cover likely played an impor-

tant role in lowering the redox state of deep seawater and

decreasing marine sulfate concentrations, by inhibiting or

slowing down atmosphere–ocean exchange, continental pyrite

oxidation, and riverine transport of sulfate to the oceans. How-

ever, the geological setting of the giant Rapitan Iron Formation,

as well as other Neoproterozoic IFs (Appendix 1), provides a

strong case for temporal and genetic connection to submarine

volcanism. Therefore, at least three factors were likely critically

important in the genesis of Neoproterozoic IFs: (1) seawater

redox state, (2) an enhanced hydrothermal flux of iron

during mantle plume breakout events, and (3) basin configura-

tion including at least partial physical separation from the global

ocean.
Close relationships among IFs, VMS deposits, seawater an-

oxia, andmantle plume events during the Precambrian provide

a key framework for interpreting the origin of Phanerozoic

ironstones. In contrast to many of the previous studies of

ironstones, we emphasize similarity in the secular trends

of ironstones, VMS, and sediment-hosted Mn deposits, organic

matter-rich shales, and intervals of enhanced submarine vol-

canism during mantle plume breakout events in the Phanero-

zoic (Figure 17). We propose that some Phanerozoic

ironstones formed during anoxic events when hydrothermal

iron was delivered to shallow shelf settings either in isolated

basins or on open continental margins.

The biosphere also played an important role in the genesis

of IFs. Not only was biotic activity involved in direct or indirect

precipitation of iron, but it also influenced the seawater redox

state and composition. For example, emergence and evolution

of the biological silica sink during the Precambrian and Phan-

erozoic influenced scavenging efficiency of phosphorus and

metals onto ferric oxyhydroxides. However, even precipitation

and oxidation mechanisms for iron-rich compounds that were

the precursor sediments of Archean IFs are not unequivocally

established. The problem remains that it is neither obvious

what the texture and mineralogical composition of those sed-

iments were, nor where and how the original sediments were

deposited prior to their resedimentation into the basin realm.

Certainly, the widespread presence of graded beds within BIF

supports a model in which some of the original sediments

were granular, as it is seemingly impossible to produce graded

beds from amorphous iron-rich clays, iron-rich gels, or chem-

ically deposited varves – the traditionally inferred precursor

sediments to BIF. Whereas recognition that classic BIF of the

Dales Gorge Member, in the Hamersley Province of Western

Australia, are density-current deposits is significant, that recog-

nition has made interpretation of the precursor sediments even

more difficult, because the original depositional site is un-

known. The same problem exists for GIFs, because they are

essentially clastic sedimentary rocks.

More broadly, our model for IF genesis provides a new

perspective on the secular evolution of the ocean redox state.

We suggest that submarine volcanism was episodically respon-

sible for generating extensive ocean- and basin-scale anoxia by

the hydrothermal venting of significant fluxes of reductants

such as H2, H2S, Fe(II), and Mn(II). This perspective applies

to both Precambrian and Phanerozoic environments, and pro-

vides a framework for better understanding ocean evolution

and the origin of sedimentary mineral deposits.
9.18.8.1 Influence of Hydrothermal Processes on Ocean
Composition and Organic Productivity

Late Archean and Paleoproterozoic IFs are commonly inter-

bedded with or adjacent to organic matter-rich, sulfidic shales.

Similar shale facies appear tobeunderrepresented in theArchean

record, beyond stratigraphic intervals that were deposited during

mantle plume breakout events (Condie et al., 2001). This asso-

ciation to date has not been explained satisfactorily. During the

Phanerozoic, the link between black shales and mantle plume



Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry 603
events commonly has been explained by sea-level rise and a

higher flux of reductants into the ocean. The reductant flux is

tied to anoxia, which favors organic matter preservation. This

explanation does not apply, however, to the Archean oceans that

were persistently anoxic (e.g., Planavsky et al., 2010a,b).

An important perspective is provided by considering the

carbon isotope mass balance relevant to Archean surface an-

oxic conditions (e.g., Bekker and Holland, 2012). In the mod-

ern world, when the sedimentary cover is recycled to the

oceans, organic carbon is oxidized and inorganic carbon is

dissolved, making both available for biological processing.

However, under anoxic surface conditions in the Archean,

organic carbon was likely redeposited and hence was not bio-

logically recycled. Including this aspect into the carbon isotope

mass balance (cf. Bekker and Holland, 2012) requires that

burial of ‘new’ organic carbon was less than 5% of the modern

burial rate of organic carbon. As a result, the amount of oxygen

released by the biological carbon cycle was also very low. We

infer that restricted availability of critical nutrients, such as Mo,

could have limited biological productivity and consequently

organic carbon burial to these low levels.

In order to explain the origin of organic matter-rich shales

associated with IFs, we infer high primary productivity that was

driven by high nutrient fluxes, sourced from either the deep

ocean or the continents. In nearly all modern aquatic systems,

primary production of organic matter is limited by phosphorus

or bioavailable nitrogen (e.g., Redfield, 1958), but trace metals

can be also colimiting or even limiting. Phosphorus was

asserted to be the ultimate limiting nutrient in the Archean

oceans, given a high flux of iron oxides that removed phos-

phate (Bjerrum and Canfield, 2002). However, during the

Archean and Paleoproterozoic, especially during peak times

of IF deposition, high dissolved silica concentrations could

have prevented iron oxyhydroxides from being a major dis-

solved phosphate sink (Konhauser et al., 2007b). Additionally,

high levels of bicarbonate during the Precambrian (cf.

Grotzinger, 1990) would have inhibited the precipitation of

carbonate fluorapatite (CFA) by greatly increasing its solubil-

ity. The possibility of inhibited CFA formation is particularly

important; in the modern oceans, this flux accounts for the

vast majority (60–80%) of phosphorus burial (e.g., Ruttenberg

and Berner, 1993). Furthermore, low burial rates of

’new’ organic matter and high efficiency of its remineralization

in an anoxic ocean lacking mechanisms for adequate export of

organic carbon to sediments likely resulted in a low burial

flux of phosphorus with organic carbon. Combined, these

factors point toward a dramatically different Archean than

the modern phosphorus cycle and relatively higher, rather

than lower, dissolved phosphorus concentrations in Archean

seawater with respect to modern seawater (Planavsky et al.,

2010a,b).

If phosphorus content was not the controlling factor for

Archean primary productivity, could nitrogen be the culprit? In

the Archean anoxic ocean, dinitrogen was seemingly fixed by

diazotrophic cyanobacteria and ammonium assimilation was

also likely common (Garvin et al., 2009; Glass et al., 2009;

Godfrey and Falkowski, 2009). Both nitrogen fixation and
ammonium assimilation are operated by enzymes, which are

dependent on bioessential trace metals such as Fe, V, and Mo,

as metal cofactors (Glass et al., 2009). Both the V and Mo

dissolved loads were generally low or negligible in early oceans

(Lalonde et al., 2011; Scott et al., 2008), because under an

essentially anoxic atmosphere these metals are insoluble.

Thus, Mo limitation was likely in the Archean oceans due to

anoxic redox conditions on land, just as iron is locally limiting

in the modern oceans because of a predominance of the oxic

water column. Iron concentrations, in contrast, were high and

iron was likely utilized by diazotrophs on early Earth

for nitrogen fixation and ammonium assimilation (Glass

et al., 2009). Iron availability enhances nitrogen fixation and

photosynthesis in modern environments (e.g., Berman-Frank

et al., 2001, 2007); however, Fe–Mo nitrogenase is 100 times as

efficient as Fe–Fe nitrogenase in dinitrogen fixation (Zerkle

et al., 2006). Therefore, nitrogen limitation (via trace metal

colimitation) of primary productivity was much more impor-

tant than phosphorus limitation in the early oceans. It is

possible that nitrogen stress was partially alleviated during

mantle plume breakout events when IFs were deposited, since

bioessential trace metals (e.g., Mo and V) can be sourced

from hydrothermal fluids (e.g., Kuhn et al., 2003; also see

Chapter 8.7). It is difficult to quantitatively estimate an

increased level of organic productivity due to enhanced hydro-

thermal metal delivery to the Archean oceans during mantle

plume events, considering the absence of positive carbon iso-

tope excursions in the Archean carbonate record.

Related changes in the atmosphere and terrestrial settings

are also relevant. The volcanism that occurred during mantle

plume events delivered large amounts of CO2 to the atmo-

sphere, and enhanced chemical weathering under resulting

greenhouse conditions would have generated a large flux of

dissolved bicarbonate and nutrients, such as phosphorus and,

to a lesser extent, nitrogen, to the oceans. This flux, by itself,

might account for high organic productivity and high absolute

burial rates of organic carbon, while the relative burial rate of

organic carbon remained constant (cf. Aharon, 2005). Volcanic

SO2 flux to the atmosphere was also scaled up during the

mantle plume breakout events, and a larger sulfur flux was

delivered to shallow-marine environments. As a result, iron

oxyhydroxides precipitated in deeper-water environments and

carbonate-facies IFsmark a transition zone to highly productive

shelves on which organic matter-rich and sulfidic shales were

deposited, utilizing reactive iron delivered by iron-depleted

hydrothermal plumes (Figure 19; Bekker et al., 2009; Rouxel

et al., 2005). These sulfidic shales could have scavenged sea-

water Mo that was delivered to the oceans hydrothermally

or, possibly, through oxidative weathering, providing an expla-

nation for Mo enrichments observed in the 2.5 Ga Mount

McRae Shale (Anbar et al., 2007) and shales proximal to the

�2.7 Ga Kidd Creek VMS deposit (Watanabe, 2002). Some of

the hydrothermally deliveredMowas likely coprecipitated with

iron oxyhydroxides in IFs, contributing to Mo isotope fraction-

ations observed in the Mount McRae Shale (Duan et al., 2010).

The carbonate-facies IFs reflect diagenetic reactions in settings

where microbial Fe(III) reduction was coupled with
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Figure 19 Schematic diagram of iron formation facies in high and low productivity basins before and after the GOE. Red arrows indicate iron
fluxes with upwelling and offshelf currents. Before the GOE, iron was upwelled onto the shelves during mantle plume events, partially oxidized while
the remaining iron was transported in solution back to the deeper part of the basin by offshore currents. Iron oxidation (IO) in the upper part of the
water column delivered iron oxyhydroxides to the deeper part of the water column and sediments, where dissimilatory iron reduction (DIR) with
organic matter as electron donor took place. Dissimilatory sulfate reduction (DSR) occurred in organic matter-rich shales and any other facies that
contained abundant organic matter. In contrast, after the GOE, iron was quantitatively oxidized in shallow-water settings where it was upwelled
during the mantle plume events.
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remineralization of organic matter (Walker, 1984). Less

productive shallow-water shelves in the Archean oceans were

depositional sites for carbonates as well as silicate- and

carbonate-facies GIFs during the mantle plume events (Beukes

and Klein, 1990).
In contrast, post-GOE Paleoproterozoic IFs are predomi-

nantly granular, shallow-water, oxide-facies IFs that grade to

finely laminated, sub-storm base (but still shelfal) Fe-silicate

and carbonate-facies types. These extensive GIFs are related to

rapid oxidation of iron delivered by upwelling iron-rich waters

Figure&nbsp;19
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to nearshore, high-energy environments and to subsequent

sedimentary reworking of these precipitates. Deeper, in areas

of high organic productivity on shelf, organic matter-rich and

sulfidic shales were deposited in association with GIF during

mantle plume events after the GOE (Figure 19).

Combined, these data suggest that after the GOE, there was

a dynamic redoxcline between continuously oxic shallow wa-

ters and ferruginous deeper waters on the continental shelves,

which was the typical depositional site for IFs (Bekker et al.,

2010). In contrast, pre-GOE IFs were predominantly deposited

in deeper-water settings having either a dynamic chemocline

separating anoxic ferruginous deep waters from anoxic sulfidic

shallow waters where black shales were deposited on highly

productive shelves or a gradual transition to shallow-water,

reduced-facies GIF in low productivity areas around sub-

merged cratons (Figure 19). This fundamental difference in

the distribution of IF facies is linked to oxygenation of the

shallow ocean and the formation of a discrete redoxcline. The

difference between pre- and post-GOE IFs is recorded not only

in their sedimentary facies, but also in a much larger range of

iron isotope fractionations in pre-GOE IFs (Planavsky et al.,

2012; Rouxel et al., 2005). Without a fully oxygenated surface

layer, partial oxidation was common in upwelling water

masses during the Archean, resulting in Rayleigh fractionation

during Fe removal and consequently a much larger range of

sedimentary iron isotope values.
9.18.8.2 Implications for Atmospheric Oxidation

The emerging view is one of coupled enhanced primary pro-

ductivity and deposition of IFs initiated by mantle plume

events. If this model is valid, then it has implications for the

rise of atmospheric oxygen. Once extensive oxidative continen-

tal weathering began, it provided abundant Mo to the oceans

to activate the much more efficient Mo-nitrogenase enzyme

(with respect to Fe–Fe nitrogenase enzyme). In addition, an

enhanced hydrothermal Mo flux was likely delivered to the

oceans during deposition of IFs at �2.48–2.45 Ga. With

more Mo available, nitrogen fixation would have flourished,

leading to increased primary productivity by photosynthetic

cyanobacteria. In turn, higher net oxygen production not only

would have provided the oxygen required to remove iron from

seawater, but also would have increased the terrestrial flux of

dissolved Mo to the oceans. Under these conditions, Fe–

Mo-nitrogenase would have replaced the less-efficient Fe–Fe

nitrogenase, removing nitrogen limitation and leading to

irreversible atmospheric oxidation. Paradoxically, in this

model the rise of atmospheric oxygen is brought on by an

enhanced flux of reductants from the mantle. Although IFs

were deposited and LIPs emplaced before then, both

processes are not comparable in scale or extent with those at

2.5–2.45 Ga (Barley et al., 2005; Condie et al., 2001; Heaman,

1997; Isley and Abbott, 1999).

Consistent with the above model, the oldest positive carbon

isotope excursion is found in carbonates of the �2.48 Ga Tong-

wane Formation, South Africa, which sits above an IF (Bekker

et al., 2001). Mass-independent sulfur isotope fractionations, a

proxy for the atmospheric redox state, declined shortly after

deposition of the �2.5–2.45 Ga IFs. Coincident with this shift

is the onset of glaciations related to the GOE and the oxidation
of atmospheric methane, which was an important greenhouse

gas during the Archean (Bekker and Kaufman, 2007).
9.18.9 Euxinic Conditions Induced by Shift in
Dissolved Fe/S Ratio of Seawater due to Iron Oxidation

Although ferruginous conditions appear to have been domi-

nant in Archean oceans, there are several documented cases of

euxinia or free sulfide existing in the coeval water column (e.g.,

Anbar et al., 2007; Kendall et al., 2010; Reinhard et al., 2009;

Scott et al., 2008, 2011). Evidence for euxinia indicates that

total dissolved S/Fe ratios commonly were greater than the

pyrite stoichiometry of two (FeS2). These results seem surpris-

ing, given a general acceptance of low sulfate and high iron

concentrations in Archean seawater. However, even at very low

sulfate concentrations it might be possible to develop euxinia.

Low-sulfate, iron-rich oceans having spatial heterogeneities in

dissolved S/Fe ratios are prone to locally establish euxinic

conditions. Euxinia can develop in such oceans where Fe(II)

oxidation effectively strips dissolved Fe2þ, creating a water

mass with a relatively high S/Fe ratio. This water mass might

retain a high dissolved S/Fe ratio when it later feeds a coastal

setting, assuming the common case where rates of isopycnal

mixing are much greater than those of diapycnal mixing. Be-

cause microbial Fe(III) reduction requires particulate contact,

the reaction is expected to be very sluggish in the water column

and therefore allows iron oxyhydroxides to sink. Ferric–ferrous

iron interactions, Si coatings on Fe oxyhydroxides, and low

Corg content in the water column also likely prevented Fe(III)

reduction above the sediment–water interface. If a water mass

in the photic zone has relatively high S/Fe ratios, it would

become euxinic given a sufficient organic matter flux to fuel

sulfate reduction. This scenario, in light of modern circulation

patterns such as that feeding the Peru upwelling zone, could

develop in an equivalent position to the modern OMZ euxinia

in a low-sulfate, low-oxygen ocean regardless of the dissolved

sulfate/Fe2þ ratios in deep waters. Although the Archean

oceans are typically envisioned to be iron-replete and sulfide-

poor, euxinia was likely relatively common in many settings

having high rates of sulfate reduction. This is also consistent

with the highly negative Fe isotope values in sulfidic black

shales, which suggest extensive iron depletion through partial

oxidation in the water column (Rouxel et al., 2005).

Changes in the atmosphere and in terrestrial settings linked

with mantle plume events were also likely relevant to the

local development of euxinic conditions in Archean oceans.

Associated volcanism would have supplied large amounts of

H2S/SO2 and CO2 to the atmosphere and to marine environ-

ments. Enhanced chemical weathering under greenhouse condi-

tions likely delivered nutrients to the oceans and, at the same

time, sulfur compounds to shallow marine environments. As a

result, iron oxyhydroxides would precipitate in deeper-water

environments, whereas sulfidic conditions would develop in

shallow-water environments where iron-depleted hydrothermal

plumes delivered reactive iron (Figure 19(a); Bekker et al., 2009;

Rouxel et al., 2005). A dynamic chemocline would therefore

exist between anoxic ferruginous deepwaters and anoxic sulfidic

shallow waters, persisting until hydrothermal iron and atmo-

spheric/terrestrial sulfur fluxes subsided, which would have
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switched the ocean back to an unstratified, anoxic state. Expan-

sion of the mixing zone between hydrothermally derived metal

and atmospherically derived sulfur compounds during super-

plume events would have generated a high productivity zone

ideally suited for increased burial of organic carbon.
9.18.10 Research Perspectives and Future Directions

Progress in research on IFs is closely linked to advancements in

the understanding of surface and submarine-hydrothermal pro-

cesses in the Precambrian and advances in geochronology, pe-

trology, analytical geochemistry, and chemical oceanography.

Early studies from the 1940s to the 1960s were directed mainly

tomap the distribution of this newly recognized iron resource in

Precambrian terranes, and to provide age constraints and a

stratigraphic framework. The discovery of Precambrian IFs im-

mediately initiated speculations among geochemists about the

mode of their origin based largely on application of thermody-

namics to aqueous chemistry of the ancient oceans. Classical

petrographic and metamorphic petrology studies focused on

establishing paragenesis and mineral composition of the proto-

lith sediments of IFs. Starting in the early 1970s, sedimentolog-

ical facies analysis followed by basin analysis and sequence

stratigraphy were incorporated into studies of IFs. The latter

two aspects provide relatively recent and still underexplored

directions for future research, with the goal of linking IF origin

to plate tectonics and supercontinent cycles.

Progress since the late 1970s in the understanding of chem-

ical oceanography and hydrothermal processes in the modern

ocean has certainly influenced studies of IFs, although progress

has been limited largely because direct comparison with mod-

ern hydrothermal analogues may not be directly applicable to

the processes of IF deposition. Quantitative modeling of hy-

drothermal processes is needed in order to investigate the

possible effects that these processes had on ancient oceans

that lacked oxygen and sulfate.

Analyses of REE and Nd isotopes on bulk samples con-

firmed that hydrothermal processes dominated the chemistry

of the early oceans. Once the role of hydrothermal processes in

the origin of IFs and their links with submarine volcanism were

appreciated, geochronology was employed to provide a test for

synchronicity or diachronicity of IFs in unrelated basins on

different cratons. This work helped establish a temporal and

genetic link between IF deposition and mantle plume events.

Although this work led to precise ages and revealed episodicity

in deposition of major IFs, some giant IFs are still undated and

their ages, once available, may dramatically impact our under-

standing of surface processes on early Earth.

Biological influences on the deposition of IFs were consid-

ered by Precambrian geologists and paleontologists for some

time. However, only since the 1990s, with advances in the field

of geomicrobiology, has the full potential of anaerobic photo-

chemical iron oxidation as a driver for IF precipitation been

realized. Models and experimental work on modern anaerobic

iron-oxidizing communities have not yet been coupled fully

with the rock record, in the sense that a direct proxy for this

process in IFs is so far unknown. In fact, although models for
iron oxidation have advanced significantly, it remains uncer-

tain what signature in the rock record can discriminate among

various mechanisms for iron oxidation.

Advances in analytical techniques have further broadened the

field of geochemical investigation of IFs. New inductively coupled

plasma mass-spectrometry (ICP-MS) instrumentation allows fast

analysis of major and trace elements, including REE, as well as

nontraditional stable isotopes (e.g., Fe, Cr, Si, and Ni). In situ

laser-ablation techniques coupled with multicollector inductively

coupled plasma mass-spectrometry (MC-ICP-MS) instrumenta-

tion and secondary ion mass spectroscopy (SIMS) provide an

incredible level of spatial resolution (�10–20 mm) with a preci-

sion and accuracy approaching those of more time-consuming

techniques usingmineral separates and column chemistry, which

provide limited spatial resolution. However, as discussed above,

the absence of primary minerals in IF makes this direction of

research, ultimately focused on the isotope and trace element

composition of ancient seawater, likely to fail. Bulk sample anal-

ysis might provide a better way to characterize the composition of

primary precipitates because the postdepositional redistribution

of elements and intermineral isotopic fractionations will likely

have a minimal effect on the scale of a hand specimen. However,

in situ analysis still has a high potential when it is closely linked

with detailed petrographic work. For example, the high preserva-

tion potential of primary textures in silicified layers and chert

nodules is still largely unexplored, as are intra- and intergrain

isotopic and trace element compositional heterogeneity in GIF.

Data on these types ofmaterialmight provide a better insight into

seawater composition as well as mixing rates and element resi-

dence times in ancient oceans.

Field and detailed petrographic studies of Precambrian IFs

rarely have been undertaken since the early 1990s and many

IFs located in remote areas or areas having logistically difficult

access were not investigated until the recent boom in iron ore

prices. Industrial support during the last two decades was also

mainly directed toward understanding how high-grade iron

ores formed. As a result, recent state-of-the-art geochemical

work has been done mainly on random or old grab samples

without detailed geological control. Until now, no study

has attempted to compare deep-water and shallow-water,

or proximal and distal, sections of the same IF in the same

depositional basin despite the obvious appeal of this

approach.

Future progress in the study of IFs depends largely on

careful integration of field-based and petrographic studies to-

gether with advanced geochemical analyses. Further, close

links with geomicrobiology, chemical oceanography, and an

understanding of submarine-hydrothermal processes are es-

sential for deciphering the origin and evolution of IFs through

time. The prospect is bright, but the burden of interaction and

collaborative research is on participants, because each of these

fields is in a rather advanced stage. However, as elsewhere in

modern science, major breakthroughs are at the interface

of fields and sciences rather than within established disciplines.

Integration thus is needed among traditional, ‘old-fashioned’

disciplines andnewadvanced fields; the outcomeof this research

and training will likely lead to a well-rounded new generation

of Precambrian geologists.
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Appendix 1 Precambrian Banded Iron Formations, Granular Iron Formations, and Rapitan-Type Iron Formationsa
Formation/group/deposit Location Age (Ma) Size (Gt) Reference(s)

1. Maly Khinghan Formation Far East, Russia �560 10 000 4, 6
2. Yerbel Formation Southeastern Uruguay �560 Unknown 7, 8
3. Jacadigo Group (Urucum district) Mato Grosso do Sul State, Brazil �600 1000 4, 9–11
4. Bisokpabe Group Togo, West Africa �600 Unknown 12, 13
5. Chestnut Hill Formation New Jersey Highlands, New Jersey,

USA
�600 Unknown

(small)
14, 15

6. Holowilena Ironstone South Australia, Australia �650 Unknown
(small)

16–18

7. Braemar Iron Formation South Australia, Australia �650 Unknown
(small)

18–20

8. Vil’va and Koyva Formations Western slope of Middle Ural
Mountains, Russia

�650 Unknown
(small)

21–24

9. Bakeevo (Tolparovo) Formation Southern Ural Mountains, Russia �650 Unknown
(small)

22

10. Dzhetymtau Suite Middle Tian-Shan, Kyrgyzstan �650 Unknown
(small)

25–28

11. UK Formation Southern Ural Mountains, Russia �700(?) Unknown 22
12. Yamata Formation East Siberia, Russia �700(?) Unknown 6
13. Lake Khanka Formation Far East, Russia �700(?) Unknown 6
14. Rapitan Formation Yukon Territory and Northwest

Territories, Canada
715 1000 4, 29–32

15. Chuos Formation Northern Namibia �715 Unknown 4, 12, 33, 34
16. Tindir Group Alaska, USA 715 Unknown

(small)
35, 36

17. Fulu Formation Jiangxi Province, China �741 1000
(estimated)

6, 37

18. Medvezhevo Formation Patom uplift, Siberia, Russia �700–750 Unknown
(small)

38, 39

19. Kingston Peak Formation California, USA �700–750 Unknown
(small)

40, 41

20. Numees Formation Southern Namibia �700–750 Unknown
(small)

12, 33, 34,
42

21. Mugur Formation Tuva, Russia and Mongolia 767�15 Unknown 6
22. Nizhne-Angara Formation Angara-Pit area, Enisey Ridge,

Siberia, Russia
�800 Unknown 43

23. Aok Formation (Shaler Supergroup) Northwest Territories, Canada �840 Unknown
(small)

44, 45

24. Xiamaling Formation Xiahuayuan region, Hebei Province,
North China

1368�12 Ma Unknown
(small)

46, 47

25. Roper Group (Corcoran and McMinn Formations) Northern Territory, Australia �1490 Unknown
(small)

48, 49

26. South Nicholson Group (Mullera Formation) Queensland, Australia �1500 Unknown
(small)

50, 51

27. Shoshong Formation Eastern Botswana �1600 1 4, 52, 53
28. Chuanlinggou Iron Formation Hebei Province, China �1650–1600 Unknown

(small)
54, 55

29. Pike’s Peak Iron Formation Arizona, USA �1728(57) Unknown
(small)

57–59

30. Gibraltar Formation Northwest Territories, Canada �1880 Unknown 60–62
31. Frere Formation Western Australia, Australia �1890 10 000 4, 63–66
32. Alwar Group (North Delhi fold belt) Rajasthan and Haryana Provinces,

India
�1850–2000 Unknown

(small)
67–69

33. Lake Superior region USA and Canada 10 000 (region
total)

4

(Continued)



Appendix 1 (Continued)

Formation/group/deposit Location Age (Ma) Size (Gt) Reference(s)

Gunflint Iron Formation Ontario, Canada <1878�2
(71) to
1850�1
(72)

(See above) 72–74

Negaunee Iron Formation Michigan, USA <1874�9
(71) to
>1850�1
(72)

(See above) 75–77

Biwabik Iron Formation Minnesota, USA <1880 to
>1850�1
(72)

(See above) 74, 75, 78

Ironwood Iron Formation Michigan and Wisconsin, USA <1880 to
>1850�1
(72)

(See above) 75, 77, 79

Riverton Iron Formation Michigan, USA <1880 to
>1850�1
(72)

(See above) 75, 77, 80

34. Sokoman Iron Formation Labrador and Quebec, Canada 1877.8�1.3 100 000 4, 81, 82
35. Rochford Formation South Dakota, USA 1884�29 Unknown

(small)
75, 83

36. Basile Formation Northwest Territories, Canada 1930 Unknown 84, 85
37. Liaohe Group Liaoning Province, China �1950–2050 100

(estimated)
86, 87

38. Estes Formation South Dakota, USA 2020–2100 Unknown
(small)

75, 83

39. Pääkkö Iron Formation Central Finland 2080�45 100 4, 88, 89
40. Glen Township Formation Minnesota, USA �2100 Unknown

(small)
75, 90

41. Lomagundi Group Northern Zimbabwe �2100–2200 Unknown
(small)

91, 92

42. Caldeirão belt Bahia State, Brazil >2078 to
<2687

Unknown
(small)

93, 94

43. Malumfashi, Maru, Birnin Gwari, Kushaka, Muro,
Egbe-Isanlu, and Obajana schist belts

Northern and southern parts of
West-Nigeria

�2100 Unknown
(small)

95

44. Ijil Group Western Mauritania �2200 100 4, 96, 97
45. Nimba Itabirite Liberia, West Africa >2100 to

<2615
10 000 4, 98–100

46. Hotazel Iron Formation Northern Cape Province, South
Africa

�2200 150
(calculated;
101)

102–105

47. Timeball Hill Formation Gauteng and North West Provinces,
South Africa

�2320 10 106–108

48. Kursk Supergroup Western Russia �2450 300 000(109) 4, 110, 111
49. Krivoy Rog Supergroup Eastern Ukraine �2450 50 000 4, 110, 112,

113
50. Transvaal Province Northern Cape Province, South

Africa
100 000(114) 4

Griquatown Iron Formation Northern Cape Province, South
Africa

2431�31 (See above) 4, 115, 116

Kuruman Iron Formation Northern Cape Province, South
Africa

2465�7 (See above) 115, 117

Penge Iron Formation North West Province, South Africa 2480�6 (Included
above; 118)

119, 120

51. Hamersley Basin Western Australia, Australia 100 000(121) 4
Boolgeeda Iron Formation Western Australia, Australia 2445�5 19 000 122, 123
Weeli Wolli Formation Western Australia, Australia 2449�3 19 000 122–124
Brockman Iron Formation (Joffre Mbr) Western Australia, Australia 2461�6 30 000 122–124
Brockman Iron Formation (Dales Gorge Mbr) Western Australia, Australia 2461�6 to

2495�16
13 000 122, 124,

125

(Continued)
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Appendix 1 (Continued)

Formation/group/deposit Location Age (Ma) Size (Gt) Reference(s)

Mt. Sylvia Formation Western Australia, Australia �2505 3000 122–124
Marra Mamba Iron Formation Western Australia, Australia 2597�5 17 000 122, 126

52. Cauê Formation Minas Gerais State, Brazil �2450 100 000 4, 127, 128
53. Indian Creek Metamorphic Suite Montana, USA 2470–2750 1 4, 129–131
54. Ruker Series Prince Charles Mountains, East

Antarctica
2450–2480 Unknown 132–134

55. Benchmark Iron Formation South Dakota, USA 2480–2560 Unknown
(small)

76, 84

56. Hutchison Group (Middleback Ranges) Cleve domain, South Australia,
Australia

�2500 1000 4, 135–137

57. Nemo Iron Formation South Dakota, USA 2560–2890 Unknown
(small)

76, 84

58. Chitradurga Group Karnataka Province, southern India 2614�8 1000
(estimated)

138–140

59. Beardmore-Geraldton assemblage Ontario, Canada �2700 Unknown
(small)

141, 142

60. Anshan Iron Formation Liaoning Province, China �2700 10 000
(estimated)
(143)

144–146

61. Manjeri Iron Formation Southern Zimbabwe �2700–2830 Unknown 147–149
62. Bababudan Group Karnataka Province, southern India 2720�7 1000

(estimated)
150–152

63. Central Slave Cover Group Nunavut, Canada 2730–2920 Unknown 153
64. Carajás Formation Pará State, Brazil �2740–2750 50 000

(estimated)
154, 155

65. West Rand Group Gauteng Province, South Africa �2960 10 4, 156–158
66. Pongola Supergroup KwaZulu-Natal Province, South

Africa
�2960 100 4, 159, 160

67. Jack Hills belt Western Australia, Australia >3080�20 Unknown
(small)

161, 162

68. Moodies Group Barberton, South Africa �3230 Unknown
(small)

163–165

aMost iron formations ~2.4 Ga and older consist largely of banded iron formation (BIF); those ~2.3–0.8 Ga are predominantly granular iron formation (GIF); Neoproterozoic Rapitan-

type iron formation (0.80–0.56 Ga) associated with glacial deposits are in italics. Several ironstones of Mesoproterozoic age are included in this compilation (see text). Algoma-type

iron formation, which occurs in or is closely associated stratigraphically with volumetrically abundant volcanic rocks (1–3), is excluded because this generally smaller type of iron

deposit, relative to predominantly sediment-hosted iron formation, does not inform the redox state of deep seawater on a large scale (2). Sizes of BIFs are estimated amounts of

originally deposited iron formation (4), and are much greater than those of reported ore reserves or resources, which are affected by extent of erosional preservation, mining practices,

economics, and other factors. This compilation does not include numerous (mostly small) sediment-hosted iron formations in China and elsewhere in Far East Asia (5), for which

geologic, geochronologic, and tonnage data are difficult to obtain.

1. Gross GA (1995) Algoma-type iron-formation. In: Eckstrand OR, Sinclair WD, and Thorpe RI (eds.) Geology of Canadian Mineral Deposit Types: Geological Survey of Canada,

pp. 66–73. Geology of Canada, No. 8.

2. Huston DL and Logan GA (2004) Barite, BIFs and bugs: Evidence for the evolution of the Earth’s early hydrosphere. Earth and Planetary Science Letters

220: 41–55.
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Journal of African Earth Sciences 3: 479–486.

Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry 609



14. Volkert RA (2001) Geologic setting of Proterozoic iron, zinc, and graphite deposits, New Jersey Highlands. In: Slack JF (ed.) Proterozoic Iron and Zinc Deposits of the Adirondack

Mountains and the New Jersey Highlands. Society of Economic Geologists Field Trip Guidebook Series, Vol. 35, Part 1, pp. 59–73.

15. Volkert RA, Monteverde DH, Friehauf KC, Gates AE, Dalton RF, and Smith RC II (2010) Geochemistry and origin of Neoproterozoic ironstone deposits in the New Jersey

Highlands and implications for the eastern Laurentian rifted margin in the north-central Appalachians, USA. In: Tollo RP, Bartholomew MJ, Hibbard JP, and Karabinos PM (eds.)

From Rodinia to Pangea: The Lithotectonic Record of the Appalachian Region. Geological Society of America Memoir 206: 283–306.

16. Dalgarno CR and Johnson JE (1965) The Holowilena ironstrone, a Sturtian glacigene unit. Quarterly Notes of the Geological Survey of South Australia 13: 2–4.

17. Preiss WV (2006) Old Boolcoomata Conglomerate Member of the Benda Siltstone—Neoproterozoic glacial sedimentation in terrestrial and marine environments in an active rift

basin. MESA Journal 41: 15–23.

18. Kendall B, Creaser RA, Calver CR, Raub TD, and Evans DAD (2009) Correlation of Sturtian diamictite successions in southern Australia and northwestern Tasmania by Re-Os

black shale geochronology and the ambiguity of “Sturtian”-type diamictite-cap carbonate pairs as chronostratigraphic marker horizons. Precambrian Research 172: 301–310.

19. Whitten GF (1970) The investigation and exploitation of the Razorback Ridge iron deposit. Geological Survey of South Australia, Report of Investigations 33, 165 p.

20. Lottermoser BG and Ashley PM (2000) Geochemistry, petrology and origin of Neoproterozoic ironstones in the eastern part of the Adelaide Geosyncline, South Australia.

Precambrian Research 101: 49–67.

21. Ablizin BD, Klyuzhina ML, Kurbatskaya FA, and Kurbatskiy AM (1982) Upper Riphean and Vendian of the West Slope of the Middle Ural, 140 p. Moscow: Nayka [in Russian].

22. Bekker YuR (1988) Precambrian Molasses, 288 p. Leningrad: Nedra [in Russian].

23. Chumakov NM (1992) The problems of old glaciations (pre-Pleistocene glaciogeology in the USSR). Soviet Scientific Reviews, Section G. Geology Reviews 1(pt 3): 1–208.

24. Chumakov NM (2011) Late Proterozoic African glacial era. Stratigraphy and Geological Correlation 19: 1–20.

25. Zubtsov YI (1972) Precambrian tillites in the Tien Shan, and their stratigraphic value. Byulleten’ Moskovskogo Obshchestva Ispytateley Prirody, Otdel Geologicheskiy 47: 42–56

[in Russian].

26. Korolev VG and Maksumova RA (1984) Precambrian Tillites and Tilloides of Tian Shan, 189 p. Frunze: Ilim Publishing House [in Russian].

27. Sagandykov KS and Sudorgin AA (1984) Dzhetym Iron-Bearing Basin of Tien Shan, 216 p. Frunze: Ilim Publishing House [in Russian].

28. Chumakov NM (2009) The Baykonurian glaciohorizon of the Late Vendian. Stratigraphy and Geological Correlation 17: 373–381.

29. Young GM (1976) Iron-formation and glaciogenic rocks of the Rapitan Group, Northwest Territories, Canada. Precambrian Research 3: 137–158.

30. Yeo GM (1986) Iron-formation in the Late Proterozoic Rapitan Group, Yukon and Northwest Territories. In: Morin JA (ed.) Mineral Deposits of Northern Cordillera, Special

Volume 37, pp. 142–153. Cassiar, BC: Canadian Institute of Mining and Metallurgy.

31. Klein C and Beukes NJ (1993) Sedimentology and geochemistry of the glaciogenic Late Proterozoic Rapitan iron-formation in Canada. Economic Geology 88: 542–565.

32. Macdonald FA, Schmitz MD, Crowley JL, et al. (2010) Calibrating the Cryogenian. Science 327: 1241–1243.

33. Roesener H and Schreuder CP (1992) Iron. In: Mineral Resources of Namibia, pp. 2.4-1–2.4-14. Namibia: Geological Survey of Namibia. Special Publication.

34. Hoffmann K-H, Condon DJ, Bowring SA, and Crowley JL (2004) U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation.

Geology 32: 817–820.

35. Young GM (1982) The Late Proterozoic Tindir Group, east-central Alaska: Evolution of a continental margin. Geological Society of America Bulletin 93: 759–783.

36. Kaufman AJ, Knoll AH, and Awramik SM (1992) Biostratigraphic and chemostratigraphic correlation of Neoproterozoic sedimentary successions: Upper Tindir Group,

northwestern Canada, as a test case. Geology 20: 181–185.

37. Tang J-F, Fu H-Q, and Yu Z-Q (1987) Stratigraphy, type and formation conditions of the Late Precambrian banded iron ores in South China. Chinese Journal of Geochemistry 6:

331–341 [in English].

38. Ivanov AI, Lifshits VI, Perevalov OV, et al. (1995) Precambrian of the Patoma Uplift, 353 p. Moscow: Nedra [in Russian].

39. Chumakov NM (2011) The Neoproterozoic glacial formations of the North and Middle Urals. In: Arnaud E, Halverson GP, and Shields-Zhou G (eds.) The Geological Record of

Neoproterozoic Glaciations, pp. 289–296. London: Geological Society of London. Memoir 36.

40. Miller JMG (1985) Glacial and syntectonic sedimentation: The Upper Proterozoic Kingston Peak Formation, southern Panamint Range, eastern California. Geological Society of

America Bulletin 96: 1537–1553.

41. Condon DJ, Prave AR, and Benn DI (2002) Neoproterozoic glacial-rainout intervals: Observations and implications. Geology 30: 35–38.

42. van Staden A, Naidoo T, Zimmermann U, and Germs GJB (2006) Provenance analysis of selected clastic rocks in Neoproterozoic to lower Paleozoic successions of southern

Africa from the Gariep Belt and the Kango Inlier. South African Journal of Geology 109: 215–232.

43. Yudin NI (1968) Lithology of Iron Ore Deposits of the Angara-Pitsk Basin, 152 p. Moscow: Laboratory of Sedimentary Ore Deposits, Nauka [in Russian].

44. Rainbird RH, Jefferson CW, Hildebrand RS, and Worth JK (1994) The Shaler Supergroup and revision of Neoproterozoic stratigraphy in the Amundsen basin, Northwest

Territories. Geological Survey of Canada, Current Research, Paper 94-1A, pp. 61–70.

45. Rainbird RH, Jefferson CW, and Young GM (1996) The early Neoproterozoic sedimentary succession B of northwest Laurentia: Correlations and paleogeographic significance.

Geological Society of America Bulletin 108: 454–470.

46. Song C and Zhang Z (1983) Xiamaling Formation and its depositional environments in Xiahuayuan region, Hebei Province, North China. Journal of Stratigraphy 7: 104–111

[in Chinese].

47. Su W, Zhang S, Huff WD, et al. (2008) SHRIMP U–Pb ages of K-bentonite beds in the Xiamaling Formation: Implications for revised subdivision of the Meso- to Neoproterozoic

history of the North China Craton. Gondwana Research 14: 543–553.

48. Canavan F (1965) Iron ore deposits of Roper Bar. In: McAndrew J (ed.) Geology of Australian Ore Deposits: Melbourne, Australasian Institute of Mining and Metallurgy, Eighth

Commonwealth Mining and Metallurgical Congress of Australia and New Zealand, pp. 212–215.

49. Kendall B, Creaser RA, Gordon GW, and Anbar AD (2009) Re–Os and Mo isotope systematics of black shales from the Middle Proterozoic Velkerri and Wollogorang Formations,

McArthur basin, northern Australia. Geochimica et Cosmochimica Acta 73: 2534–2558.

50. Harms JE (1965) Iron ore deposits of Constance Range. In: McAndrew J (ed.) Geology of Australian ore deposits: Melbourne, Australasian Institute of Mining and Metallurgy,

Eighth Commonwealth Mining and Metallurgical Congress of Australia and New Zealand, pp. 264–269.

51. Page RW and Sweet IP (1998) Geochronology of basin phases in the western Mt Isa inlier and correlation with the McArthur basin. Australian Journal of Earth Sciences 45:

219–232.

52. Ermanovics IF, Key RM, and Jones MT (1978) The Palapye Group, central-eastern Botswana. Transactions of the Geological Society of South Africa 81: 61–73.

53. Mapeo RBM, Ramokate LV, Armstrong RA, and Kampunzu AB (2004) U–Pb zircon age of the upper Palapye group (Botswana) and regional implications. Journal of African Earth

Sciences 40: 1–16.

54. Wan Y-S, Zhang Q-D, and Song T-R (2003) SHRIMP ages of detrital zircons from the Changcheng System in the Ming Tombs area, Beijing: Constraints on the protolith nature

and maximum depositional age of the Mesoproterozoic cover of the North China craton. Chinese Science Bulletin 48: 2500–2506 [in English].

610 Iron Formations: Their Origins and Implications for Ancient Seawater Chemistry



55. Dai Y-D, Song H-M, and Shen J-Y (2004) Fossil bacteria in Xuanlong iron ore deposits of Hebei Province. Science in China, Series D 47: 347–356 [in English].

56. This age is problematic because the contact between the dated felsic metavolcanic unit and the Pike’s Peak Iron-Formation is a fault.

57. Slatt RM, Heintz GM, Lowry PH, and O’Hara PF (1978) Precambrian Pike’s Peak Iron-Formation, Central Arizona. Arizona Bureau of Geology and Mineral Technology, Special

Paper 2, pp. 73–82.

58. Burr JL (1991) Proterozoic stratigraphy and structural geology of the Hieroglyphic Mountains, central Arizona. Arizona Geological Society Digest 19: 117–133.

59. Burr JL (1994) Constraints on timing of Early Proterozoic deformation and metamorphism in the Hieroglyphic Mountains, central Arizona [abs.]. Geological Society of America

Abstracts with Programs 26: 405.

60. Bowring SA, Van Schmus WR, and Hoffman PF (1984) U–Pb zircon ages from Athapuscow aulacogen, East Arm of Great Slave Lake, N.W.T. Canadian Journal of Earth Sciences

21: 1315–1324.

61. Roscoe SM, Gandhi SS, Charbonneau BW, Maurice YT, and Gibb RA (1987) Mineral resource assessment of the area in the East Arm (Great Slave Lake) and Artillery Lake region,

N.W.T., proposed as a national park (NTS 75 J,K, L, N, O). Geological Survey of Canada, Open File 1434, 92 p.

62. Hoffman PF, Bowring SA, Buchwaldt R, and Hildebrand RS (2011) Birthdate for the Coronation paleocean: Age of initial rifting in Wopmay orogen, Canada. Canadian Journal of

Earth Sciences 48: 281–293.

63. Goode ADT, Hall WDM, and Bunting JA (1983) The Nabberu basin of Western Australia. In: Trendall AF and Morris RC (eds.) Iron-Formation: Facts and Problems. Developments

in Precambrian Geology, vol. 6, pp. 295–323. Amsterdam: Elsevier.

64. Rasmussen B and Fletcher IR (2002) Indirect dating of mafic intrusions by SHRIMP U–Pb analysis of monazite in contact metamorphosed shale: An example from the

Palaeoproterozoic Capricorn orogen, Western Australia. Earth and Planetary Science Letters 197: 287–299.

65. Pirajno F, Hocking RM, Reddy SM, and Jones AJ (2009) A review of the geology and geodynamic evolution of the Palaeoproterozoic Earaheedy Basin, Western Australia. Earth-

Science Reviews 94: 39–77.

66. Rasmussen B, Fletcher IR, Bekker A, Muhling JR, Gregory CJ, and Thorne AM (2012) Deposition of 1.88-billion-year-old iron formations as a consequence of rapid crustal

growth. Nature 484: 498–501.

67. Patwardhan AM, Patil DN, and Sukhtankar RK (1987) On magnetite quartizites occurring around Narnaul, Haryana, India. In: Appel PWU and LaBerge GL (eds.) Precambrian Iron-

Formations, pp. 513–537. Athens: Theophrastus Publications.

68. Biju-Sekhar S, Yokoyama K, Pandit MK, Okudaira T, Yoshida M, and Santosh M (2003) Late Paleoproterozoic magmatism in Delhi fold belt, NW India and its implication:

Evidence from EPMA chemical ages of zircons. Journal of Asian Earth Sciences 22: 189–207.

69. Deb M and Thorpe RI (2004) Geochronological constraints in the Precambrian geology of Rajasthan and their metallogenic implications. In: Deb M and Goodfellow WD (eds.)

Sediment-Hosted Lead-Zinc Sulphide Deposits, pp. 246–263. New Delhi: Narosa Publishing.

70. Radiometric age within iron formation.

71. Minimum age from occurrence of Sudbury impact layer at top of iron formation.

72. Floran RJ and Papike JJ (1978) Mineralogy and petrology of the Gunflint Iron Formation, Minnesota-Ontario: Correlation of compositional and assemblage variations at low to

moderate grade. Journal of Petrology 19: 215–288.

73. Fralick P, Davis DW, and Kissin SA (2002) The age of the Gunflint Formation, Ontario, Canada: Single zircon U–Pb age determinations from reworked volcanic ash. Canadian

Journal of Earth Sciences 39: 1085–1091.

74. Addison WD, Brumpton GR, Valini DA, et al. (2005) Discovery of distal ejecta from the 1850 Ma Sudbury impact event. Geology 33: 193–196.

75. Bayley RW and James HL (1973) Precambrian iron-formations of the United States. Economic Geology 68: 934–959.

76. Schneider DA, Bickford ME, Cannon WF, Schulz KJ, and Hamilton MA (2002) Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup:

Implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Canadian Journal of Earth Sciences 39: 999–1012.

77. Cannon WF, Schulz KJ, Horton JW Jr., and Kring DA (2010) The Sudbury impact layer in the Paleoproterozoic iron ranges of northern Michigan, USA. Geological Society of

America Bulletin 122: 50–75.

78. Perry EC, Tan FC, and Morey GB (1973) Geology and stable isotope geochemistry of Biwabik Iron Formation, northern Minnesota. Economic Geology 68: 1110–125.

79. Cannon WF, LaBerge GL, Klasner JS, and Schulz KJ (2008) The Gogebic Iron Range – A sample of the northern margin of the Penokean fold and thrust belt. U.S. Geological

Survey Professional Paper 1730, 44 p.

80. James HL, Dutton CE, Pettijohn FJ, and Wier KL (1968) Geology and ore deposits of the Iron River-Crystal Falls district, Iron County, Michigan. U.S. Geological Survey

Professional Paper 570, 134 p.

81. Klein C and Fink RP (1976) Petrology of the Sokoman Iron-Formation in the Howells River area, at the western edge of the Labrador Trough. Economic Geology 71: 453–487.

82. Findlay JM, Parrish RR, Birkett TC, and Watanabe DH (1995) U–Pb ages from the Nimish Formation and Montagnais glomeroporphyritic gabbro of the central New Quebec

orogen, Canada. Canadian Journal of Earth Sciences 32: 1208–1220.

83. Frei R, Dahl PS, Duke EF, et al. (2008) Trace element and isotopic characterization of Neoarchean and Paleoproterozoic iron formations in the Black Hills (South Dakota, USA):

Assessment of chemical change during 2.9–1.9 Ga deposition bracketing the 2.4–2.2 Ga first rise of atmospheric oxygen. Precambrian Research 162: 441–474.

84. Bowring SA, Van Schmus WR, and Hoffman PF (1984) U–Pb zircon ages from Athapuscow aulacogen, East Arm of Great Slave Lake, N.W.T. Canadian Journal of Earth Sciences

21: 1315–1324.

85. Johnson BJ (1990) Stratigraphy and structure of the Early Proterozoic Wilson Island Group, East Arm thrust-fold belt, N.W.T. Canadian Journal of Earth Sciences 27: 552–569.

86. Zhang Q-S (1987) Banded iron formations in China. In: Appel PWU and LaBerge GL (eds.) Precambrian Iron-Formations, pp. 423–448. Athens: Theophrastus Publications.

87. Luo Y, Sun M, Zhao G-C, Li S-Z, Xu P, Ye K, and Xia X-P (2004) LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the eastern block of the North China craton: Constraints on

the evolution of the Jiao-Liao-Ji belt. Precambrian Research 134: 349–371.
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Appendix 2 Exhalites Associated with Precambrian Deep-Water (Cu-Rich) Volcanogenic Massive Sulfide
Depositsa
VMS deposit (District) Location Age (Ma) VMS (Mt) Exhalite type(s) Reference(s)

Keete Inlet Alaska, USA �554–600 <1 Magnetite IF 9, 10
Jingtieshan Gansu Province, China 586–670 <1 Hematite–magnetite–siderite IF, jasper 11, 12
Um Samiuki Eastern Desert, Egypt �750 <1 Magnetite IF 13–15
Matchless Central Namibia 760–780 2.5 Magnetite IF 16–18
Otjihase Central Namibia 760–780 15.4 Magnetite IF 16, 19, 20
Xiqiu Zhejiang Province, China �900 31.0 Jasper 21–23
Altı̂n-Tepe Eastern Romania �1000 10.9 Magnetite IF 24
Palmeiropolis Tocantins State, Brazil 1170–1270 5.0 Magnetite IF 25, 26
Boksputs Cape Province, South Africa 1275�7 1.7 Magnetite IF 27, 28
Itaberaba São Paulo State, Brazil 1395�10 None (29) Magnetite and hematite IF 30, 31
Bon Ton Colorado, USA �1700 <1 Magnetite IF 32, 33
Jones Hill New Mexico, USA 1720�15 11.0 Magnetite IF, spessartine-rich IF

(coticule)
34–36

Old Dick/Bruce (Bagdad) Arizona, USA 1721�6 �2 Hematitic chert 37–39
United Verde (Jerome) Arizona, USA 1738.5�0.5 >30 Jasper, hematite IF 5, 40, 41
Copper Chief (Jerome) Arizona, USA 1738.5�0.5 <1 Jasper, magnetite, and hematite IF 5, 40, 42
Miguela Eastern Bolivia 1765–1690 1.6 Magnetite and hematite IF 43, 44
Gunnison (Gunnison) Colorado, USA 1776�7 <1 Magnetite IF, hematitic chert 33, 45, 46
Encampment/Pearl Wyoming, USA 1792�15 <1 Magnetite IF, silicate IF, ferruginous

chert
47, 48

San Diego Western Australia, Australia 1843�2 2.3 Magnetite IF; sulfide–silicate IF 49, 50
Sherritt Gordon Manitoba, Canada �1860 7.0 Sulfidic chert and schist 51, 52
Crandon Wisconsin, USA 1869�6 63.5 Pyritic argillite/tuff; pyritic chert 53–55
Eisenbrey/Thornapple Wisconsin, USA �1870 3.0 Magnetite IF; silicate IF 56, 57
Bend Wisconsin, USA �1870 3.7 Jasper, magnetite, and hematite IF 56, 58
Soucy Québec, Canada �1880 5.5 Sulfide–silicate IF 59, 60
Ruttan Manitoba, Canada 1883�2 82.8 Pyritic chert, sulfide IF 61–63
Anderson Lake (Snow Lake) Manitoba, Canada 1892�3 3.4 Sulfide IF 64, 65
Spruce Point (Snow Lake) Manitoba, Canada 1892�3 1.9 Sulfide IF 65, 66
Bigstone (Snow Lake) Manitoba, Canada 1892�3 1.5 Sulfidic tuff 65, 66
Aijala Southwestern Finland �1895 <1 Silicate IF, oxide IF 67, 68
Flin Flon (Flin Flon) Manitoba, Canada 1903�7 62.9 Sulfide IF, magnetite IF 69, 70
Wutai Shanxi Province, China �2530 Unknown Sulfide IF, magnetite IF 71, 72
Ingladhal Mysore State, India 2614�8 �1 Pyritic IF 73–75
Izok Nunavut, Canada 2681�7 16.5 Sulfide–silicate IF 76
Corbet (Noranda) Québec, Canada 2700.8�2.6 2.8 Pyritic IF 77, 78
Millenbach (Noranda) Québec, Canada 2700.8�2.6 3.6 Sulfide IF 78–80
High Lake Nunavut, Canada 2705�1 15.6 Pyritic IF, carbonate IF 81
Geco (Manitouwadge) Ontario, Canada 2720�2 58.4 Magnetite IF; sulfide–silicate IF 82–84
Willroy (Manitouwadge) Ontario, Canada 2723�2 4.0 Magnetite IF; sulfide–silicate IF 82–84
Bell Allard (Matagami) Québec, Canada 2724.5�1.8 3.2 Sulfidic chert and tuff; silicate IF 85–88
Orchan (Matagami) Québec, Canada 2724.5�1.8 3.5 Sulfidic chert and tuff; silicate IF 85–88
Selbaie Québec, Canada 2729�3 29.9 Pyritic IF 89, 90
Sturgeon Lake (Sturgeon
Lake)

Ontario, Canada 2735.5�1.5 4.0 Pyritic tuff 91–94

Lyon Lake (Sturgeon Lake) Ontario, Canada 2735.5�1.5 3.2 Pyritic tuff 91–94
Scuddles (Golden Grove) Western Australia, Australia 2960�6 10.5 Sulfidic chert; magnetite IF; jasper 95, 96
Maranda (Murchison) North West Province, South

Africa
2966.5�1.6 <1 Pyritic chert 97, 98

aExhalites are chemical sedimentary rocks that formed on the sea floor by precipitation from submarine-hydrothermal fluids, generally as fallout from nonbuoyant plumes either

proximal or distal to volcanogenic massive sulfide (VMS) deposits (1–4). Occurrences compiled here are restricted to VMS deposits having �1% Cu, which implies formation from

high-temperature (>300 �C) fluids in relatively deep seawater at depths of >850 m (5). Excluded from this compilation are exhalites that occur within the same volcanic or

volcanosedimentary sequence as the VMS deposit(s), but are at different (or unknown) stratigraphic levels (6). Exhalites associated with Zn–Pb deposits are also excluded, because

they could have formed from low-temperature fluids in shallow restricted basins, within oxic seawater above the chemocline. Similarly excluded are magnetite-rich lenses that formed

by subseafloor replacement and not as true exhalites, such as in the Gossan Hill VMS deposit in Western Australia (7), and epigenetic magnetite-rich bodies belonging to the iron

oxide–copper–gold (IOCG) class of deposits that formed in continental, not submarine, settings (8). With few exceptions, ages of the VMS deposits are based on high-precision U–Pb

zircon geochronology of felsic metavolcanic host rocks. Abbreviations: Ma, million years; Mt, million metric tons; IF, iron formation.
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